INTRODUCTION

SEDIMENTARY DEPOSITS

Sedimentary rocks are widespread in the Idaho Batholith, representing both pre- and syn-batholithic deposition. These rocks are typically fine to very fine-grained and locally include clay-sized detritus. Detrital zircon age populations range from Proterozoic to Mesozoic, with the majority from the Neoproterozoic to Mesozoic.


Muscovite, biotite, quartz, feldspar, and albite are common minerals in the diorite and granodiorite, with muscovite and biotite making up about 50% of the rock. Rare hornblende. Magnetite is a common constituent, making up about 5% of the rock.

ARGILLIZATION

Argillization is rather spotty. Though it is best seen close to mineralized areas, it is also present in areas far from the ore bodies. In most areas, it has lost its original character due to the introduction of iron oxide, talc, and other minerals.

MISSOURI RIDGE FAULT

The Salt Creek fault, striking northeast and dipping steeply to the northwest, is associated with argillite and carbonate alteration. The fault is likely to have a width of about 100 ft.

Bearing and plunge of small fold axis. Strike and dip of bedding, strike variable. Foliation orientation and fabric strength vary, but generally strengthen to the east in the Stibnite area by Stewart and others (2016). Zircon ages are 1.7 Ma.

DIRECTION

The Snake River planetary boundary is shown in the north. The boundary is defined by the Snake River Plain and the Continental Divide. The Snake River Plain is a large area of flat land that extends from southern Idaho to northern Nevada. The Continental Divide is a line of elevation that separates the drainage of the Snake River Plain from the drainage of the Columbia River Basin.

DESCRIPTION OF MAP UNITS

The map units are shown in the legend. The map units are defined by their geologic characteristics and are used to interpret the geologic history of the area.

CORRELATION OF MAP UNITS

The map units shown in the legend are correlated with the map units in the field. The correlations are used to interpret the geologic history of the area.

DETRITAL ZIRCON DATA

The detrital zircon data are shown in the table. The data are used to interpret the geologic history of the area.

ANOMALIES AND PROSPECTS

The anomalies and prospects are shown in the map. The anomalies are used to interpret the geologic history of the area.

ASSOCIATED CAVITIES

The associated cavities are shown in the map. The cavities are used to interpret the geologic history of the area.