INTRODUCTION

The surficial geologic map of the Moscow East quadrangle, Latah County, Idaho, is comprised of rock units as well as various surficial deposits that have been mapped at a 1:24,000 scale. The map was created using data from various sources, including field work conducted in 1997. The map provides insight into the geology of the area and is intended for those interested in the area's natural resources, urban and rural development, construction design, sewage drainage, solid waste sites, and the recharge of ground water. It is a valuable tool for understanding the subsurface geology of the region.

DESCRIPTION OF MAP UNITS

Periglacial and colluvial deposits (Pleistocene) — A zone of laterite on foot slopes and interfluvies, with silty, sandy gravel, silt, and pebbles. The gravel consists mostly of granules and pebbles derived from granite and other igneous rocks. Soils developed in these deposits are predominantly the Dark Brown, very dry, sandy loam.

Loess-derived alluvium, silty clay loam, very dark brown — The loess is mostly Holocene and late Pleistocene in age. It is composed of silt and sand, and is typically 20 to 40 feet thick. The loess thins eastward where it is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

Tertiary terrace alluvium of the South Fork of Palouse River (Pleistocene) — Stream, slope-wash, and debris-flow deposits. The terrace alluvium is preserved in secs. 8 and 17, T. 39 N., R. 5 W. May be composed of more than one alluvial level. It is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

Saddle Mountains Basalt (Pliocene) — A flow of basalt that covers an area of approximately 2,000 acres. The basalt is composed of basaltic rock and is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

Miocene clay, sand, and gravel — Predominantly silt interbedded with silty sand, granules, and pebbles. Soils developed in these deposits are predominantly the Spokane, sandy, loamy, and fine, to medium, subangular blocky, mesic Typic Haplaquoll.

CENOZOIC

Loess-derived alluvium, silty clay loam, very dark brown — The loess is mostly Holocene and late Pleistocene in age. It is composed of silt and sand, and is typically 20 to 40 feet thick. The loess thins eastward where it is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

Tertiary terrace alluvium of the South Fork of Palouse River (Pleistocene) — Stream, slope-wash, and debris-flow deposits. The terrace alluvium is preserved in secs. 8 and 17, T. 39 N., R. 5 W. May be composed of more than one alluvial level. It is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

Saddle Mountains Basalt (Pliocene) — A flow of basalt that covers an area of approximately 2,000 acres. The basalt is composed of basaltic rock and is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

Miocene clay, sand, and gravel — Predominantly silt interbedded with silty sand, granules, and pebbles. Soils developed in these deposits are predominantly the Spokane, sandy, loamy, and fine, to medium, subangular blocky, mesic Typic Haplaquoll.

Pleistocene terrace alluvium of the South Fork of Palouse River (Pleistocene) — Stream, slope-wash, and debris-flow deposits. The terrace alluvium is preserved in secs. 8 and 17, T. 39 N., R. 5 W. May be composed of more than one alluvial level. It is mostly reworked loess; gravel fragments are basalt, granitoid mineral, and quartz granules.

REFERENCES


Barker, R.J., and others, 1985, Geologic Map of the Moscow area, Latah County, Idaho, and part of the Moscow quadrangle, scale 1:24,000. Idaho Geological Survey Geologic Map 27, scale 1:24,000.


