History of the Lost Packer Mine,
Custer County, Idaho

Victoria E. Mitchell
History of the Lost Packer Mine, Custer County, Idaho

Victoria E. Mitchell

Staff reports present timely information for public distribution. This publication may not conform to the agency's standards.

Staff Report 97-11
April 1997

Idaho Geological Survey
Morrill Hall, Third Floor
University of Idaho
Moscow, Idaho 83844-3014
CONTENTS

Introductory Note .. v
Lost Packer Mine ... 1
References ... 25

FIGURES

Figure 1. Location map of the Lost Packer Mine and vicinity, Custer County, Idaho (U.S. Forest Service Challis National Forest map, scale 1 inch = 1 mile). .. 2
Figure 2. Topographic map of the Lost Packer Mine (U.S. Geological Survey Pinyon Peak and Casto 7.5-minute quadrangles). .. 3
Figure 3. Aerial view of the Lost Packer Mine, 1982 (Photograph by A. Leszczkowski, U.S. Bureau of Mines). ... 4
Figure 4. Geology of the Lost Packer Mine and vicinity, Custer County, Idaho (Fisher and others, 1992). ... 5
Figure 5. Lost Packer Mine, around 1905 (Page 43 from Bell, Robert N., 1906, Seventh Annual Report of the Mining Industry of Idaho for the Year 1905). ... 7
Figure 6. Hot blast pyritic copper smelter, Lost Packer Mine (Page 44 from Bell, Robert N., 1906, Seventh Annual Report of the Mining Industry of Idaho for 1905). ... 10
Figure 7. Exterior of the Lost Packer smelter, around 1907 (Photograph from the collection of James Ivers). .. 11
Figure 8. Hauling ore to the Lost Packer smelter, around 1907 (Photograph from the collection of James Ivers). .. 12
Figure 10. Plan and sections of the Lost Packer Mine, 1911 (Figure 4 from Umpleby, 1913). .. 16

Figure 11. Geologic map of the Lost Packer Mine, 1927 (Plate 8 from Ross, 1934). .. 17

Figure 12. Lost Packer smelter and ore piles, 1911 (Plate IX from Umpleby, 1913). .. 19

Figure 13. Geologic plan and sections of the Lost Packer Mine, 1927 (Plate 7 from Ross, 1934). .. 21

Figure 14. Upper adit at the Lost Packer Mine, 1994 (Idaho Geological Survey photograph by Falma J. Moye). .. 23

Figure 15. Lower adit (No. 7 level) at the Lost Packer Mine, 1994 (Idaho Geological Survey photograph by Falma J. Moye). .. 24

TABLES

Table 1. Companies and individuals operating at the Lost Packer Mine. 6

Table 2. Development work, employment, and operating companies at the Lost Packer Mine, by year. .. 9

iv
INTRODUCTORY NOTE

This report was prepared under a cooperative agreement with the U.S. Forest Service, Region IV, as part of a project to identify and describe inactive and abandoned mines in the state of Idaho. Work on this project included preparing detailed histories of mines in Region IV that had significant recorded production. The information in this report is from a number of published and unpublished sources in the Idaho Geological Survey’s mineral property files. Where not otherwise noted, most of the mine production data is drawn from the U.S. Geological Survey’s (USGS) annual volumes on Mineral Resources of the United States (1882-1923) and the equivalent volumes produced by the U.S. Bureau of Mines (USBM) (Mineral Resources of the United States, 1924-1931, and Minerals Yearbook, 1932 to present). Information on underground workings and mine equipment is generally from the annual reports of the Idaho Inspector of Mines (IMIR) published from 1899 to 1979. After 1974, the Mine Inspector’s office was known as the Mine Safety Bureau, a section of the Idaho Department of Labor and Industrial Services. Detailed accounts of mine operations are, for the most part, drawn from annual reports prepared by the companies for the State Inspector of Mines; these reports were required by law and the information contained in them formed the basis of the Mine Inspector’s annual reports. Reports of recent developments are taken from the Idaho Geological Survey’s (IGS) annual reports on the developments in mining and minerals in Idaho (from 1984 to present) or from similar reports produced by the Survey’s predecessor, the Idaho Bureau of Mines and Geology (IBMG) from 1975 to 1984. Other published sources are referenced in the text. A complete bibliography is included at the end of the report. Where direct quotations are taken from source materials, the original spelling and grammar are preserved even in cases where they do not conform to currently accepted usage.
History of the Lost Packer Mine, Custer County, Idaho

Victoria E. Mitchell

The Lost Packer Mine is in northern Custer County and is on patented mining claims surrounded by the Frank Church-River of No Return Wilderness (Figure 1). The mine is located in a steep, south-facing gulch that leads into Canyon Creek, a tributary of Loon Creek (Figures 2 and 3); Loon Creek drains into the Middle Fork of the Salmon River. The lowest tunnel is at an elevation of 7,210 feet, and the highest tunnel is at 8,100 feet. The claims also covered most of the townsite of Ivers. The Lost Packer smelter and mill were just below the lowest mine tunnel on the east end of town. Access to the nearest railroad is over Loon Creek Summit (elevation 8,600 feet), which is closed in the winter.

The mine is a gold-copper vein hosted by quartz-biotite schist (Ross, 1934), which is of Paleozoic (?) or Precambrian (?) age (Figure 4; Fisher and others, 1992). The schist is surrounded by rocks of the Eocene dacite/diorite complex ("gray porphyry"; Fisher and others, 1983, 1992). The vein is within a fissure that strikes N, 5° E. and dips 75° NW. (Umpleby, 1913). The ore is gold-bearing chalcopyrite with inclusions of pyrite and pyrrhotite. The gangue consists of quartz, siderite, and host rock fragments (Leszczynowski and others, 1985).

The Lost Packer was discovered by Clarence E. Eddy (or Eddie) in July 1902. (Table 1 shows the individuals and companies operating at the mine.) The lode was named for a packer who, according to local legend, lost his way in the Loon Creek area around 1866 and stumbled across a promising lode of ore. Eddy and his partners began mining from an open cut. They sold their interests to the Lost Packer Mining Company (operated by the principals of the Lucky Boy Gold Mining Co. of Custer

1Idaho Geological Survey, Main Office at Moscow, University of Idaho, Moscow.
Figure 1. Location map of the Lost Packer Mine and vicinity, Custer County, Idaho
(U.S. Forest Service Challis National Forest map, scale ½ inch = 1 mile.)
Figure 2. Topographic map of the Lost Packer Mine (U.S. Geological Survey Pinyon Peak and Casto 7.5-minute quadrangles).
Figure 3. Aerial view of the Lost Packer Mine, 1982. Line of dumps marks course of vein. (Photograph by A. Leszcykowski, U.S. Bureau of Mines.)
Figure 4. Geology of the Lost Packer Mine and vicinity, Custer County, Idaho. rps = schist roof pendant (Paleozoic (?) or Precambrian (?)); rp = roof pendants; Ose = Saturday Mountain Formation, Kinnikinic Quartzite, and Ella Dolomite, undivided; Kgd = biotite granodiorite of the Idaho batholith; Kt = Cretaceous tonalite; Klg = leucocratic granite; Tg = Tertiary granite; Tgp = gray porphyry; Tcv, Tcr, Tc, Tqb, Te = Eocene Challis Volcanics; Tri, Tqp = silicic intrusive rocks; Tg = Tertiary granite; Ql = landslide deposits; Qa = Quaternary alluvium. Heavy lines are faults (Fisher and others, 1992).
Table 1. Companies and individuals operating at the Lost Packer Mine.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Officer</th>
<th>Date Incorporated</th>
<th>Charter Forfeited</th>
<th>Year(s) at Mine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarence Eddy</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1902</td>
</tr>
<tr>
<td>Lost Packer Mining Co.</td>
<td>James Ivers, President</td>
<td>1</td>
<td>1914</td>
<td>1902-1914</td>
</tr>
<tr>
<td>Ivers & Finlan</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1904</td>
</tr>
<tr>
<td>Lost Packer Co.</td>
<td>James Ivers, President</td>
<td>1</td>
<td>1</td>
<td>1906</td>
</tr>
<tr>
<td>Ivers Mining Co.</td>
<td>James Ivers, Sr. (III?), President</td>
<td>Sept. 8, 1959</td>
<td>1975</td>
<td>1959-1975</td>
</tr>
<tr>
<td>Lost Packer Mining Co.</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ivers family</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1902(?)-to present</td>
</tr>
</tbody>
</table>

1Information is not available in the IGS’s files.

City) in September 1902 for about $10,000. Lost Packer Mining Co. patented four claims in 1903. The original veins presented a slim surface showing, but several mine-car loads were shipped from the first level, yielding average values in gold of $150.00 per ton and values in copper of 7 to 15 percent. The Lost Packer shipped five full carloads of ore to the Salt Lake valley smelters in 1903. The ore averaged almost 8 ounces of gold, 15 ounces of silver, and 10 percent copper per ton. In addition, the Idaho Inspector of Mines noted that the No. 2 tunnel showed a vein of concentrating ore 13 to 15 feet thick that sampled $40 to $50 per ton across its full width in gold, silver and copper.

The 1903 IMIR described the Lost Packer deposit as follows (p. 46):

The Lost Packer vein is a nearly vertical fissure that splits a prominent mountain spur from top to bottom [Figure 5], cutting down through a series of heavy terrace like sheets of light colored igneous rock that caps the mountain; it maintains the same strength and size down into the underlying granite. This great vein is over twenty feet wide in places and is being developed by three adit tunnels started and driven on the vein at elevations varying from one hundred to seven hundred fifty feet below the highest ore crest. The vein filling is quartz and schist gangue sprinkled with iron and copper pyrites and carrying a band of almost pure amorphous chalcopyrite of a beautiful yellow color in pay streaks twenty to forty inches thick, following one or both walls. The richest ore carries besides the copper a sprinkling of silver white sulphide of bismuth.
Figure 5. Lost Packer Mine, around 1905. Dashed line marks course of the vein.
(Page 43 from Bell, Robert N., 1906, Seventh Annual Report of the Mining Industry of Idaho for the Year 1905.)
Excitement over the Lost Packer Mine caused a dozen new stock companies to form and begin promoting Loon Creek properties, but the Lost Packer is the only mine in the area that was developed to any extent or that shipped any significant amount of ore.

The Lost Packer was sold to Ivers & Finlan of Salt Lake City, who began developing the mine in the spring of 1904. (The mine is still held by members of the Ivers family.) Development work proceeded steadily throughout the year (Table 2; actual footage for most of the development work at the Lost Packer was never reported). The adits were extended on the vein and exposed "pay ore bodies that run into the hundreds of thousands of dollars in gross value" (1904 IMIR, p. 56). Several mine cars of ore, carrying from 6 to 10 ounces of gold and 15 to 20 percent copper were packed out during the summer. Jennings (1906) stated that sufficient ore was produced during the first two years to pay all the costs of development. (According to the 1904 IMIR, the Lost Packer shipped ore valued at $60,000 from its development work, and the mine "practically paid its own way since it was discovered two and a half years ago" (p. 57).) This ore was carried by mules to Jordan Creek; equipment and supplies were carried to the mine the same way. To alleviate the transportation problem, ore shipments during 1904 were subordinated to the work of building a wagon road to the property. The project was entirely financed by the company.

Seventeen miles of road were built in 1904. The road ran from the end of the Jordan Creek road, 7 miles west of Custer, over Loon Creek Summit and down Mayfield Creek to within 4 miles of the Lost Packer. It was completed early the next spring.

The 1905 IMIR (p. 43) described the Lost Packer as follows:

At this date the Lost Packer Mine has a mile of underground development work in the form of adit tunnels and underground connections that exposed a body of ore 10 to 15 feet wide, carrying average values of 2 to 3 per cent copper and $5.00 to $7.00 in gold per ton. In addition to this low grade ore this great vein carries a clean rib of pay streak of massive chalcocypite ore, 6 inches to 5 feet thick, that will safely average 2 feet thick, and is proven for a length of 500 feet and a depth of 400 feet, that carries average values of 2 to 5 ounces of gold and 10 to 25 percent copper per ton.

This rib of bonanza ore is very clearly defined and strong in the bottom of the work and at both ends. It has a free cleavage, with slicken-sided surfaces that in places are polished like a mirror on the massive mineral.

The vein has been opened carrying the same high values at a point 800 feet distant and 300 feet vertically lower down the mountain.

The property of the Lost Packer Company, of which this development is the central feature, covers the course of this bonanza ore channel for 6,000 feet through a vertical range of fully 1,800 feet, all of which is available for adit tunnel development.

The company installed a hot-blast pyritic copper furnace with a capacity of 100 tons per day (tpd) in 1905 (Figures 6, 7, and 8). The smelter, built by the Colorado Iron Works of Denver, Colorado, was completed in November, too late to test before winter closed the road. All the machinery was in place, ready for testing first thing in
Table 2. Development work, employment, and operating companies at the Lost Packer Mine, by year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Men employed</th>
<th>Tunnels (in feet)</th>
<th>Sinking (in feet)</th>
<th>Cross-cutting (in feet)</th>
<th>Drifting (in feet)</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1913</td>
<td>10</td>
<td>1,274</td>
<td>159^1</td>
<td>1,115^2</td>
<td>---</td>
<td>Lost Packer Mining Co.</td>
</tr>
<tr>
<td>1916</td>
<td>6-30</td>
<td>600</td>
<td>200^1</td>
<td>400^2</td>
<td>---</td>
<td>Lost Packer Mining Co.</td>
</tr>
<tr>
<td>1961</td>
<td>2</td>
<td>1,560^3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>Ivers Mining Co., Inc.</td>
</tr>
<tr>
<td>1962</td>
<td>3^4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>310</td>
<td>Ivers Mining Co., Inc.</td>
</tr>
</tbody>
</table>

^1 Combined figure for sinking and raising.
^2 Combined figure for cross-cutting and drifting.
^3 Rehabilitation of old drifts.
^4 Employed for only three months.

the spring. The 1905 IMIR contained the following description of the smelter and its intended operation (p. 44):

The smelter is a strictly modern plant of 100-ton daily capacity, jacketed to the feed floor. It is intended to use a compromise hot blast, pyritic process, using coke and wood fuel, and by the introduction of the hot blast the fuel element of sulphur in the ore is taken advantage of, giving a ratio of 5 to 8, as compared to coke.

The air before being supplied to the tuyeres is heated in a separate stove or furnace, using cord wood fuel, the gases passing through an arrangement of massive hanging "U" shaped pipes. This feature of the stove is walled in by common brick, lined with fire brick, and covered with fire tile. The air is heated to 300 degrees C. before entering the smelting furnace proper, where it produces an oxidizing as well as a reducing effect. The pay streak ore to be used in the initial run of this smelter is high in sulphur and also carries about 5 per cent lime, and with this process admits of a high silica charge.

The matte to be made from the quality of ore intended to be used should contain about 50 per cent copper and 10 to 15 ounces of gold and 50 ounces of silver per ton.

Plans called for the smelter to treat custom ore, as well as ore from the Lost Packer. Coke and supplies were hauled by wagon from Mackay, the terminus of a branch of the Oregon Short Line Railroad, 110 miles away.

The town of Ivers, which included its own post office, was established in 1905 at the mine. The town was said to have "some well stocked mercantile establishments" (1905 IMIR, p. 45).
Figure 6. Hot blast pyritic copper smelter, Lost Packer Mine (Page 44 from Bell, Robert N., 1906, Seventh Annual Report of the Mining Industry of Idaho for 1905.)
Figure 7. Exterior of the Lost Packer smelter, around 1907 (Photograph from the collection of James Ivers).
Figure 8. Hauling ore to the Lost Packer smelter, around 1907 (Photograph from the collection of James Ivers).
The smelter was blown in early in the summer of 1906, but the run was unsuccessful due to an accident to the furnace during the first shift of operation. It proved impossible to get the smelter started again before winter set in. However, it was readjusted and put into shape to begin operation in the spring.

The mine had six adits, which were connected underground. During the year, an air compressor and machine drill were added to the mine’s equipment. The ore averaged 15 to 30 percent copper, with 3 to 5 ounces gold and 10 to 15 ounces silver per ton. High-grade reserves were said to be worth $2 million in gross value.

The company operated the smelter for 34 days during 1907. The smelter produced 430 tons of copper matte, which was shipped to eastern refiners. The matte averaged 51 percent copper, 10 ounces of gold, and 30 ounces of silver. The IMIR stated that the smelting plant "proved a marked success" (1907 IMIR, p. 72). Slag losses were insignificant, with the average slag assays running 0.2 percent copper, 0.3 ounce of silver, and a trace of gold, for a net saving of 99 percent of the values in the ore treated. Smelting cost was about $6 per ton. Production was hampered by a short hauling season and serious difficulties in getting coke and supplies to the mine. The cost of coke delivered at the Lost Packer mines was $40 per ton. The plant closed for the winter on November 1, 1907. Production for the year was valued at over $100,000.

Development work during 1907 totaled 3,612 feet of drifts, raises, and crosscuts. The lowest tunnel cut the lode at a depth of 700 feet. In addition to its main operation, the Lost Packer Company acquired and opened an "immense" body of iron oxide ore in limestone a short distance south of the smelter (Figure 9). This material was used as flux for the smelting operations. The iron ore contained almost enough gold and silver to pay for the cost of mining it. Bell speculated that the iron was a gossen capping a valuable deposit of lead or copper. (Geologic mapping and geochemical sampling by the Idaho Geological Survey and the U.S. Bureau of Mines during the summer of 1982 failed to locate any significant mineralization in this area, although the Lost Packer vein is believed to continue to the south across Canyon Creek.)

In 1908, the Lost Packer Company operated the smelter for ninety days during the summer. The year’s production was valued at over $200,000. The matte was shipped to Baltimore for refining. Profits from the 1907 and 1908 smelter runs were sufficient to pay for all the development costs, including mine equipment, surface buildings, smelter construction, boilers, hydroelectric plant, and constructing 21 miles of road (Dunbar, 1992). Operating expenses, however, remained high. The average price of hauling goods from Mackay to Ivers was 2½ cents a pound, round trip (Umpleby, 1913). If the wagons were loaded both ways, costs were 1½ cents a pound for freight hauled to the mine and 1 cent per pound for ore hauled out. This made the average price of coke at Ivers around $46 per ton. Expenses charged against matte delivered free on board at Mackay were $20 to $22 per pound.
Figure 9. Topographic and geologic map of the Loon Creek district near the Lost Packer Mine (Plate X from Umpleby, 1913).
The mine was developed to a depth of 800 feet. The main orebody was not thoroughly explored beyond the 400-foot level, although the Nos. 6 and 7 adits were 700 feet long. Little work was done in 1908.

The Lost Packer was worked continuously throughout 1909, but the smelter was not operated due to the expense of hauling coke into the mine. The 1909 IMIR described the operation as follows (p. 48):

A strong fissure vein carrying chalcopyrite associated with extremely high gold values is developed upon this property by several tunnels and drifts to a depth of 1,000 feet beneath the apex. The last two tunnels, the 800 and 1,000-foot, have not as yet reached the ore body, but are being driven at the present time. The next tunnel above, 700-foot, has encountered the south shoot, but the 600-foot and those above have developed two ore shoots. No stoping has been carried on to any extent below the 400-foot level. This vein, which carries in places two feet of clean massive chalcopyrite, is cut by a number of dikes which have been determined as aplite by the Smithsonian Institute. These dikes displace the vein a distance equal to the thickness of the dike. This displacement caused a great deal of delay and expense in the early development of the mine, but the present superintendent, Mr. Boyle, has become so accustomed to the nature of this deposit that he is able to pick up the vein on the other side of a dike with very little dead work.

The company confined its 1909 efforts to developing the mine while waiting for the completion of the railroad being surveyed down the Salmon River to Stanley. The railroad was never built.

Development work continued at the Lost Packer during 1910, but again no attempt was made to operate the smelter. The mine was developed to a depth of approximately 1,000 feet by crosscut tunnels and drifts. Much of the work during the year was done on the 1,000-foot level. Around $400,000 worth of ore was blocked out and waiting to be treated. The ore ran approximately $85 per ton in gold, silver, and copper values.

Two smelter runs of 10 days each were made during 1911, and 84 tons of ore were treated each day. The company shipped 300 tons of matte, valued at nearly $100,000. According to the IMIR, the Lost Packer smelter produced the highest grade of gold-bearing copper matte in the country. The total gross output of the mine through 1911 was reported to be over $500,000 (Umpleby, 1913).

Umpleby (1913) visited the Lost Packer in 1911. At the time, he described the mine workings as consisting of eight tunnels (Nos. 1, 2, 3, 4, 6, 7, 8, and 10) entering along the strike of the vein, with an elevation difference of 1,000 feet between the highest and the lowest (Figures 10 and 11). Two additional levels (Nos. 5 and 9) did not open to the surface. The vein had been explored for about 2,000 feet. Along strike, ore was localized into three distinct shoots, all of which were vertical or dipped steeply to the northwest. The north shoot was found only in the No. 4 tunnel, where it was 120 feet long, and in the No. 3 tunnel, where it was 250 feet long. It averaged about 2 feet in width. Umpleby (1913, p. 97) noted, "This ore body is
Figure 10. Plan and sections of the Lost Packer Mine, 1911 (Figure 4 from Umpleby, 1913).
Figure 11. Geologic map of the Lost Packer Mine, 1927 (Plate 8 from Ross, 1934).
comparatively lean, roughly sorted material running about $20 to the ton—one-half ounce gold, 2 ounces of silver, and 3½ per cent of copper." The middle shoot was the richest. It lay 200 feet south of the north shoot and was developed from the No. 7 level upwards to the top of the vein. The shoot was about 500 feet long on the No. 2 level, and narrowed above and below; its average length was about 300 feet. The ore ranged in width from a few inches to 5 feet, with the average width being about 20 inches. Chalcopyrite was almost one-third of the total vein material. Assays of the ore ran 2½ to 3 ounces of gold per ton, and about 2½ ounces of silver for every ounce of gold. The ore in the middle shoot wedged out at the ends, and the assay value decreased as the orebody narrowed. Ore removed from the shoot usually ran $70 to $90 per ton, and the stopes were abandoned when the ore values declined to $25 per ton. The south shoot was 500 feet south of the middle shoot. It was developed from the No. 10 level upward to its surface outcrop near the portal of the No. 6 tunnel. The orebody was 75 to 150 feet long and about 20 inches wide. The ore ran 26 percent iron, 4½ percent copper, half an ounce of gold, and 3 ounces of silver per ton. The iron was an asset, because the ores needed additional iron for smelting. Umpleby noted that all the mine’s production came from ore averaging $80 to $90 per ton; for every ton of ore at that grade, 2½ tons of $25 ore remained in the mine. Most of the ore was hand-sorted in the stopes before transporting it to the smelter (Dunbar, 1992). Figure 12 shows the Lost Packer smelter and ore piles at the time of Umpleby’s visit.

In 1912, a few men worked at the Lost Packer Mine. Development consisted of 824 feet of drifts, 291 feet of crosscuts, and 159 feet of raises. No new ore was discovered, and the ore reserves remained the same as at the end of the previous year. Reserves were estimated at several hundred thousand dollars in gross value. The smelting plant did not operate in 1912, but it did run for 24.6 days in 1913. In that time, 1,800 tons of ore was treated, producing 380 tons of matte which averaged 8 ounces of gold, 26 ounces of silver, and 45 percent copper per ton. The company paid a dividend of $25,000 to its stockholders, although the expensive wagon haul to and from Mackay greatly reduced the mine’s profits. According to the IMIR, the total yield to date from the smelter’s operation was around $700,000 worth of gold-bearing matte. At that time, the company estimated the total mine workings were about 5 miles in length and reported average development costs of $7.24 per foot.

The smelter was again idle in 1914, but several hundred tons of ore, valued at $65 a ton, was mined for future processing. No ore was shipped.

In 1915, the smelter was run a short time, producing two carloads of high-grade gold-bearing copper matte. To treat the siliceous low-grade ore, the company installed a 50-ton flotation plant. Equipment consisted of a crusher, a ball mill, a thickener, and flotation machines. Ross (1934) noted that the mill included a cyanide
Figure 12. Lost Packer smelter and ore piles, 1911. View is from the south (Plate IX from Umpleby, 1913).
plant. A small crew of men continued development work at the mine during the winter.

The smelter was idle in 1916, but the flotation plant produced some concentrate, which was hauled to Mackay for shipment. The flotation plant was also operated in 1917. However, metallurgical difficulties with the ore, coupled with the failure to locate the middle ore shoot from the No. 10 level, led to closing the mine in 1917 (Dunbar, 1992).

The No. 10 level was reopened in 1923 (Dunbar, 1992). Exploration work, including excavation of a few cross-cuts, raises, and sublevels, failed to locate the middle ore shoot. A small lot of ore was shipped in 1925, and the mine was again closed in 1927. When Ross visited the mine in the summer of 1927, he reported that the mine was developed on ten levels which extended over a vertical distance of 940 feet. Eight of the levels were tunnels that opened to the surface; according to Ross (1934, p. 119), "comparatively little work" had been done on the two blind levels. Of the workings, only the No. 3 and No. 10 tunnels, and parts of the No. 4, No. 6, and No. 7 levels, were accessible (Figure 13). The work done around the time of Ross’s visit included drifting at the end of the No. 10 tunnel and cleaning out the upper levels.

A forest fire in August 1931 destroyed the townsite and the entire surface plant of the mine. Most of the timbers at the portals were burned, leaving the underground workings inaccessible.

Between 1960 and 1962, the 2, 3, 4, 7, and 10 tunnels were reopened. Parts of levels 7 and 10 were retimbered, airpipe was installed on the 10 level, and 300 feet of new drift were driven around a caved area on the 10 level. All of levels 3 and 10 and parts of levels 2 and 7 were surveyed and mapped. Five hundred feet of diamond drilling was completed and logged, and the mine was sampled (Dunbar, 1992). Total mine development (much of it inaccessible or accessible only through raises unsafe to enter) was approximately 12,750 feet on ten levels open (or formerly open) to the surface and on five blind sublevels (Leszczkowski and others, 1985). In 1961, the length of the No. 10 tunnel was 1,500 feet, and the No. 7 was 60 feet. In 1962, the company reopened 2,800 feet of old workings. An Office of Mineral Exploration (OME) loan for $46,623 was awarded on November 20, 1963. The OME project ran for two years, with government participation at 50 percent. Apparently, some mineralization was discovered, but it was not considered economic.

Little work was done until 1973. During the hiatus, many of the portals again caved. The No. 7 level was reopened and retimbered in 1973. A 185-foot drift was run around a caved portion of the tunnel which had been shut off at least since the 1920s (Dunbar, 1992). Several unsuccessful attempts were made to reach the northernmost parts of the original workings. Diamond drilling, begun in 1978, located a displaced section of a vein in 1979; it was hoped this was the long-sought extension of the middle ore shoot. Drilling continued, and in 1980, development work began on
Figure 13. Geologic plan and sections of the Lost Packer Mine, 1927 (Plate 7 from Ross, 1934).
this discovery. Denison Mines planned to evaluate the mine, but apparently did not become involved with the property.

Cross-cutting work reached the vein in 1983 (Leszczkowski and others, 1985). The 1983 Idaho Geological Survey regional developments report described it as "[a]n impressive gold-bearing chalcopyrite vein, in places measuring as much as 15 inches wide" (p. 34); similar veins in the Lost Packer carried as much as 5 ounces of gold per ton. The vein was called the "Rediscovery Vein," and analyses seemed to indicate that this ore was comparable with material originally mined from the middle vein (Leszczkowski and others, 1985).

Work continued on the seventh level of the Lost Packer mine during 1984. A new section of the vein was opened, and a drilling program explored the area below the vein. Exploration work continued from 1985 to 1987. In 1988, the Lost Packer shipped 200 tons of high-grade ore.

Small shipments of ore from the Lost Packer were custom-milled at U.S. Antimony's custom mill at Preachers Cove in 1990 and 1991. Three men worked at the mine during 1992. They rehabilitated 500 feet of drift on an upper level near the mine's discovery point. Exploration toward the north continued in 1993. Figures 14 and 15 show two of the adits at the mine in 1994.

Total recorded production for the mine from 1903 to 1937 was 9,874 tons of ore. This yielded 19,791 ounces of gold, 48,451 ounces of silver, and 1,797,786 pounds of copper. Information for recent production is not available.
Figure 14. Upper adit at the Lost Packer Mine, 1994 (Idaho Geological Survey photograph by Falma J. Moye).
Figure 15. Lower adit (No. 7 level) at the Lost Packer Mine, 1994 (Idaho Geological Survey photograph by Falma J. Moye).
References

Idaho Geological Survey’s mineral property files (includes copies of company reports to the Idaho Inspector of Mines).

