
Victoria E. Mitchell
Virginia S. Gillerman

Victoria E. Mitchell
Virginia S. Gillerman

Staff Reports present timely information for public distribution. This publication may not conform to the agency's standards.
Report originally prepared in 1999 for the U.S. Bureau of Land Management
Under Participating Agreement No. 1422-D910-A3-0206, Task Order #4

Field Inspection conducted by Virginia S. Gillerman and Gregg Beukleman
CONTENTS

Geology .. 1
Hazard Assessment ... 1
 Site ID-0054-00007: Red Elephant Mine (Main Workings, HA-326) 1
 Site ID-0054-00008: Lipman Tunnel (Red Elephant Mine; HA-326L) 7
 Site ID-0054-00009: Red Elephant Millsite (HA-326m) 8
References .. 8
Site Inspection Reports for Mines in Red Elephant Gulch 10
 Red Elephant Mine (main workings) .. 11
 Red Elephant Mine (Lipman tunnel) ... 35
 Red Elephant millsite ... 46
Appendix A: GPS File Names for Mines in Red Elephant Gulch 59

ILLUSTRATIONS

Figure 1. Location map of the Red Elephant Gulch and vicinity near Hailey and Bellevue, Blaine County, Idaho (Idaho Transportation Department Fairfield 30x60-minute quadrangle, scale 1:100,000). ... 2
Figure 2. Geologic map of the area around Red Elephant Gulch, Blaine County, Idaho (Worl and others, 1991; enlarged to a scale of approximately 1:125,000). ... 3
Figure 3. Geologic and topographic map of the Mayflower and Red Elephant area, Blaine County, Idaho (Fryklund, 1950, Plate 3). ... 4
Figure 7-1. Topographic map of the Red Elephant Mine, Blaine County, Idaho (U.S. Geological Survey Richardson Summit 7.5-minute topographic map). ... 17
Figure 7-2. Map of the Red Elephant Mine, showing features logged during the site inspection. ... 18
Figure 7-3. Sketch map of key features at the Red Elephant Mine. ... 19
Figure 7-4. Open Adit #1, the lower adit next to the road, at the Red Elephant Mine (Roll Hailey 2 (9073), frame #22a; photograph by Virginia S. Gillerman; September 11, 1997). ... 23
Figure 7-5. Dump for Adit #2 at the Red Elephant Mine (Roll Hailey 2 (9073), frame #23a; photograph by Virginia S. Gillerman; September 11, 1997). ... 23
Figure 7-6. Caved portal of Adit #3 (Red Elephant No. 6 level) (Roll Hailey 3 (9072), frame #2; photograph by Virginia S. Gillerman; September 12, 1997). ... 24
Figure 7-7. Dump for Adit #3 (No. 6 level) at the Red Elephant Mine (Roll Hailey 3 (9072), frame #1; photograph by Virginia S. Gillerman; September 12, 1997). ... 24
Figure 7-8. Adit #4 (No. 2 level) at the Red Elephant Mine (Roll Hailey 3 (9072), frame #3; photograph by Virginia S. Gillerman; September 12, 1997). ... 25
Figure 7-9. Close-up of the gate on Adit #4 (No. 2 level) at the Red Elephant Mine, showing the "No Trespassing" sign (Roll Hailey 3 (9072), frame #4; photograph by Virginia S. Gillerman; September 12, 1997). ... 25
Figure 7-10. Ore bin at the foot of Dump #4 at the Red Elephant Mine (Roll Hailey 2 (9073), frame #25a; photograph by Virginia S. Gillerman; September 11, 1997). ... 26
Figure 7-11. Ore bin at the foot of Dump #4 at the Red Elephant Mine (Roll Hailey 2 (9073), frame #24a; photograph by Virginia S. Gillerman; September 11, 1997). ... 26
Figure 7-12. Ore bin on Dump #4 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #5; photograph by Virginia S. Gillerman; September 12, 1997). ... 27
Figure 7-13. Portal of Adit #5 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #6; photograph by Virginia S. Gillerman; September 12, 1997). ... 27
Figure 7-14. Open door and interior of Adit #5 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #7; photograph by Virginia S. Gillerman; September 12, 1997). ... 28
Figure 7-15. Overview of the main Red Elephant workings, showing the relationship between the dumps for Adits #4, #5, and #6 (Roll Hailey 3 (9072), frame #19; photograph by Virginia S. Gillerman; September 12, 1997). ... 28
Figure 7-16. Shaft #1 (Caledonia Shaft) at the Red Elephant Mine (Roll Hailey 3 (9072), frame #8; photograph by Virginia S. Gillerman; September 12, 1997). ... 29
Figure 7-17. Overview of the Red Elephant workings at the head of Bullion Gulch (Roll Hailey 3 (9072), frame #16; photograph by Virginia S. Gillerman; September 12, 1997). ... 29
Figure 7-18. Adit #9 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #9; photograph by Virginia S. Gillerman; September 12, 1997). ... 30
Figure 7-19. Grass and reeds in front of Adit #9 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #10; photograph by Virginia S. Gillerman; September 12, 1997). ... 30
Figure 7-20. Adit #10 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #11; photograph by Virginia S. Gillerman; September 12, 1997). ... 31
Figure 7-21. Adit #12 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #12; photograph by Virginia S. Gillerman; September 12, 1997). ... 31
Figure 7-22. Mostly caved Adit #15 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #15; photograph by Virginia S. Gillerman; September 12, 1997). ... 32
Figure 7-23. Open stope at the Red Elephant Mine (Roll Hailey 3 (9072), frame #13; photograph by Virginia S. Gillerman; September 12, 1997). ... 32
Figure 7-24. Wall of the open stope at the Red Elephant Mine (Roll Hailey 3 (9072), frame #14; photograph by Virginia S. Gillerman; September 12, 1997). ... 33
Figure 7-25. Trench #1 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #17; photograph by Virginia S. Gillerman; September 12, 1997). ... 33
Figure 7-26. Trench #1 at the Red Elephant Mine (Roll Hailey 3 (9072), frame #18; photograph by Virginia S. Gillerman; September 12, 1997). ... 34
Figure 8-1. Topographic map of the Lipman tunnel (Red Elephant Mine), Blaine County, Idaho (U.S. Geological Survey Richardson Summit 7.5-minute topographic map). ... 39
Figure 8-2. Map of the Lipman tunnel (Red Elephant Mine) showing features logged at the site. ... 40
Figure 8-3. Caved Adit #1 at the Lipman Tunnel of the Red Elephant Mine (Roll Hailey 3 (9072), frame #20; photograph by Virginia S. Gillerman; September 12, 1997). ... 44
Figure 8-4. Water and lush vegetation near the Lipman Tunnel (Roll Hailey 3 (9072), frame #21; photograph by Virginia S. Gillerman; September 12, 1997). ... 44
Figure 8-5. Collapsed building at the Lipman Tunnel of the Red Elephant Mine (Roll
Hailey 3 (9072), frame #22; photograph by Virginia S. Gilleran; September 12,
1997). .. 44

Figure 8-6. Collapsed ore bin at the prospect below the Lipman Tunnel at the Red
Elephant Mine (Roll Hailey 3 (9072), frame #26; photograph by Virginia S.
Gilleran; September 12, 1997). .. 45

Figure 9-1. Topographic map of the Red Elephant millsite, Blaine County, Idaho (U.S.
Geological Survey Richardson Summit 7.5-minute topographic map). 51

Figure 9-2. Map of the Red Elephant millsite, showing features logged during the site
inspection. .. 52

Figure 9-3. Sketch map of the Red Elephant millsite, showing the relationship of the
impoundments to the course of Elk Creek. .. 53

Figure 9-4. Foundation for the Red Elephant mill (Roll Hailey 3 (9072), frame #23;
photograph by Virginia S. Gilleran; September 12, 1997). 57

Figure 9-5. Middle tailings impoundment at the Red Elephant millsite, with Elk Creek
flowing through the middle of the tailings pile (Roll Hailey 3 (9072), frame #24;
photograph by Virginia S. Gilleran; September 12, 1997). 57

Figure 9-6. Tailings pile at Site D at the Red Elephant millsite (Roll Hailey 3 (9072), frame
#25; photograph by Virginia S. Gilleran; September 12, 1997). 58

TABLES

Table 1. Summary of sites in the Red Elephant area. 5
Table 2. Geochemical analyses of tailings from the Red Elephant millsite. 50
GEOLOGY

The area around Red Elephant Gulch (Figure 1) is underlain by the Dollarhide and Wood River formations of Pennsylvanian and Permian age, and by intrusive granitic rocks of Cretaceous age (Figure 2). The Dollarhide Formation is composed of dark-colored and carbonaceous calcareous sandstone, calcareous siltstone, silty and sandy limestone, and silty argillite (Worl and others, 1991). The lead-silver deposits in Red Elephant Gulches are hosted by the lower member of the Dollarhide Formation (Link and others, 1995; Worl and Johnson, 1995). Cretaceous intrusive rocks, primarily quartz diorite and hornblende-biotite granodiorite, intrude the older sedimentary rocks to the north, west, and east (Figure 1; Worl and others, 1991).

The Red Elephant Mine was discovered before 1900 (Lindgren, 1900), and major production of lead and silver occurred at that time (Umpleby and others, 1930). Descriptions of the mine can be found in Umpleby and others (1930) and in Fryklund (1950). There is probably enough carbonate in the Dollarhide Formation to neutralize any acid mine water from mines that are hosted in this unit. The workings of the mine are shown in Figure 3.

HAZARD ASSESSMENT

SITE ID-0054-00007: RED ELEPHANT MINE (MAIN WORKINGS, HA-326)

The Red Elephant Mine was one of the largest producing mines in the Hailey region. (A popular saloon and restaurant in Hailey is named for the mine.) The principal adits and waste dumps are located at the head of Red Elephant Gulch. Elk Creek flows down the main part of the gulch, but the draw below the mine was dry at the time of the field inspection. A rocky four-wheel-drive road extends the 2.5 miles from the mouth of Red Elephant Gulch to the main workings. This road is approximately six miles southwest of Hailey on the Croy Creek road. Numerous houses are in the Croy Creek valley, and a red ranch house is at the mouth of Red Elephant Gulch. There was minimal evidence of visitors to the Red Elephant Mine. The major workings of the mine are on patented claims, with BLM property below them. The access road is passable up to the divide between Red Elephant and Bullion gulches (to the east). It passes a large ore bin on the main dump and several waste dumps. Beyond the divide, a jeep trail continues down into the trees in Bullion Gulch to Adit #10 and the OK Tunnel (Adit #9). A number of open workings (adits and stopes) were found hidden in the trees on this part of the Red Elephant property. Many of them connect and are difficult to see because of the vegetation. The 7 open adits, 8 closed adits, 2 closed shafts, 1 open stope, 1 trench, and 4 prospects listed here are a minimum for the Red Elephant Mine. Several of these constitute moderately severe physical hazards.

The country rocks are sedimentary, principally black argillite, limestone, and sandstone. Sulfide minerals noted on the dumps include pyrite, galena, sphalerite, and tetrahedrite. Quartz veins, quartz breccias, and silicified zones are common. Fryklund’s (1950) map (Figure 3) was invaluable for accurately locating the major workings and geologic features. Outcrops of several of the veins were trenched or had been stoped to the surface.
Figure 1. Location map of the Red Elephant Gulch and vicinity near Hailey and Bellevue, Blaine County, Idaho (Idaho Transportation Department Fairfield 30x60-minute quadrangle, scale 1:100,000).
Figure 2. Geologic map of the area around Red Elephant Gulch, Blaine County, Idaho. Dm = Milligen Formation; PPdl, Pdm = Dollarhide Formation; Pwh, PPwe = Wood River Formation; Kgd, Kqd = Idaho batholith; Tda = Tertiary dike rocks; Tct, Tca = Challis Volcanics; Tmf = Miocene lava flows (Magic Mountain eruptive center); Qt = terrace gravels; Qa = alluvium. Heavy lines are faults: ball and bar on downthrown side of normal fault, sawteeth on upper plate of thrust fault, and hachures on upper plate of low-angle normal faults (Worl and others, 1991; enlarged to a scale of approximately 1:125,000).
Figure 3. Geologic and topographic map of the Mayflower and Red Elephant area, Blaine County, Idaho (Fryklund, 1950, Plate 3).
Table 1. Summary of sites in the Red Elephant area. Site name in bold indicates property has one or more significant potential environmental or physical hazards. Under “Environmental Hazards”: T = a mill tailings problem, D = dump material in or near waterway. Under “Physical Hazards” – Features: A = adit, P = prospect pit, S = shaft, St = stope; Condition: O= open, C = Caved. ? = Unknown (condition or number).

<table>
<thead>
<tr>
<th>BLM Site Number</th>
<th>IGS Property Number</th>
<th>Mine Name</th>
<th>Environment Hazard</th>
<th>Physical Hazard</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-0054-00007</td>
<td>HA 326</td>
<td>Red Elephant Mine</td>
<td>W</td>
<td>7AO 8AC 2SC 1StO</td>
<td>Close openings. Open stope is extremely dangerous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(main workings)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID-0054-00008</td>
<td>HA 326</td>
<td>Red Elephant Mine</td>
<td>W, D</td>
<td>1AC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Lippman tunnel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID-0054-00009</td>
<td>HA 326M</td>
<td>Red Elephant millsite</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The workings will be described from west to east, as one might drive to them (Figure 7-3). The small, but dangerous, openings in the trees are best approached on foot, and someone skiing or snowmobiling could come upon them unexpectedly. The adit numbers correspond to those used for the GPS unit.

Adit #1 is on the road up Red Elephant Gulch. It has a 2-foot-high opening with a wooden portal (Figure 7-4), which should be easy to close. Adit #2, across the draw on the west side of road, is closed (Figure 7-5). Adit #3, which is also closed, has a large dump with a swampy area by the portal (Figures 7-6 and 7-7). Healthy, mature vegetation covers the dump and the swampy area by the caved portal. Adit #3 is the #6 level of the Red Elephant Mine, according to Fryklund (1950; Figure 3). The large dump has been dissected by the creek and shows both red, oxidized material and typical black argillite. In spite of the swampy area by the portal, there was no significant discharge at the time of the visit.

Adit #4 is the main, or No. 2 Tunnel, level of the mine. Adit #4 has the largest and most visible waste dump (Dump #4) with a large wooden ore bin on the dump (Figure 7-12). The ore bin has one side collapsed, but the main structure looked stable. Other than a few rusty nails and minor scrap metal and lumber, the dump is clean. The rocks are siliceous black argillite with quartz, pyrite, and traces of other sulfides. The portal of Adit #4 is secured by a wooden gate and posted with a “No Trespass” sign, but the gate is not locked (Figures 7-8 and 7-9). Caved rocks hold the door shut, but the 8-foot by 6-foot tunnel is open and appears in good condition beyond the door. A person could open the gate or squeeze around it. The portal should be locked, as the public can drive right to it. Sparse wetland vegetation suggests seasonal water seeps at the adit. No discoloration or adverse environmental effects were noted.

The access road continues past Dump #4, curves left and then doubles back past the upper workings to climb the ridge. The road crosses Dump #5 and Adit #5, which is wide open and only a few feet from the road. Adit #5 is the #1 Tunnel (Figure 3; Fryklund, 1950). Adit #5 has a 4-foot by 6-foot opening in very competent rock (Figure 7-13), but the portal door is held open by a pile of caved rock (Figure 7-14). The air from the adit had a strong, musty, “bad air” smell, and there was no ventilation. Because Adit #5 is easily accessible, it is very dangerous.

Adit #6 and Dump #6 are located above the #1 Tunnel and may correspond to the original Red Elephant workings. Adit #6 is totally collapsed and no picture was taken. There is no road to it.

Uphill and on the east side of the ridge are Shaft #1 and Adit #7. Both are totally caved (Figure 7-16) and located at a modest sized dump hidden by sagebrush. This was probably the Caledonia Shaft (Figure 3; Fryklund, 1950). No hazards were noted. Downhill in the east-trending draw is a large, prominent dump (Dump #9). The associated adit (Adit #9) corresponds to the OK Tunnel workings. The adit had a 1-foot high opening (Figure 7-18) in competent rock, with water standing inside. Water was flowing from this adit at about 2 gallons per minute. The pH was 8.1 and the conductivity 320 μs. Limestone is the principal rock nearby. Lush wetland vegetation is growing in front of the adit (Figure 7-19). The dump extends 100 feet downhill and is 50 feet across. The vegetation should keep intruders out of the adit, and the water did not appear to be a problem. A jeep trail reaches Dump #9.

Adit #10 is probably the Point Lookout Tunnel (Figure 3). Adit #10 opens directly onto the road (Figure 7-20), and the 3-foot-high opening should be closed. There is no Adit #11; this number was accidentally skipped.
A sizeable group of open workings is located along the Point Lookout vein in the trees uphill from Adit #10. They are too numerous to show on a 1:24,000 map, and the GPS data was hard to collect due to trees and topography blocking the satellite signals. Consequently, this area needs to be remapped prior to any remediation. The thick forest also prevents hikers or snowmobilers from seeing the workings and the sharp drop-offs associated with some of the pits. Stope #1 is a collapsed stope measuring approximately 20 feet by 30 feet by 60 feet deep. The photo (Figure 7-23) does not adequately convey the vertical drop. Adit #12, which is along the road and below the stope, is open (Figure 7-21). Adit #13 is caved, with a dump that measures 40 feet by 20 feet by 5 feet. Adit #14, which is open, is in the south wall of Stope #1 (Figure 7-24). Adit #15 is partially caved and may lead to the open stope (Figure 7-22). The road crosses the dump for Adit #15. Adit #16 has a 1-foot-high opening under a tree. It is located near where the vegetation changes from trees to sagebrush in the drainage. This group of workings most likely exploits some of the irregular limestone replacement, oxide orebodies near the surface on the Point Lookout claim. These workings constitute a significant physical hazard, but luckily they will not be found by very many people. Warning signs, and possibly fences, are needed.

Northwest of the above workings is the OK Vein, another surface outcrop of gossany quartz vein. The OK vein trends N. 80° W. and is exposed in Trench #1, which is heavily vegetated and collapsed in places. The trench is 4 feet to 8 feet deep (Figures 7-25 and 7-26). The unexpected dip would be dangerous for snowmobilers, but should not be a problem for hikers. The trench extends up to the saddle on the ridge. From there, the main Red Elephant workings on the southwest side of the ridge are visible. Taken from further west, Figure 7-15 shows Red Elephant Gulch with Dump #4, the ore bin, and Dump #5.

In summary, the Red Elephant workings do not appear to have any major environmental hazards, but there are several physical hazards which need mitigation. Adit #5 should be closed and locked immediately. Adits #1, #4, and #10 need locked gates. The area which includes Adits #12-#15 and the open stope should be fenced or, at the very least, have warning signs posted on the trees.

SITE ID-0054-00008: LIPMAN TUNNEL (RED ELEPHANT MINE; HA-326L)

This site includes the waste dump and portal for a lower tunnel located along Elk Creek near the confluence with the gulch extending up to the main Red Elephant workings. This adit is known as the Lipman Tunnel (Fryklund, 1950) or the Red Elephant Consolidated Tunnel (Umpleby and others, 1930). The portal elevation of the Lipman Tunnel is about 6,250 feet, whereas the elevation for the No. 2 Tunnel (Adit #4) is 6,900 feet. A good two-wheel-drive road goes to the Lipman portal. The waste dump is adjacent to, but slightly above, the floodplain on the east side of Elk Creek. Visitors have camped on the dump.

The Lipman Tunnel is caved (Figure 8-3), and the waste dump is moderate in size. The rocks on the dump are principally limestone, with some quartzite and argillite. Sulfides are sparse. There is a collapsed wooden building on the dump (Figure 8-5). The lumber contains many old nails and should be cleaned up. Minor amounts of other trash were also present. Water discharging from a spring at the adit is the source for Elk Creek. The water was flowing at a rate of 10-15 gallons per minute. It had a pH of 7.8 and a specific conductivity of 270 μS. Water
quality appeared good, and there was a lush growth of wetland vegetation at the portal (Figure 8-4).

A collapsed ore bin (Figure 8-6), next to an old prospect or adit, was seen on the west side of Elk Creek approximately ¼ mile downstream from the Lipman Tunnel. The site was not easily accessible and was not visited.

No significant hazards or problems are associated with the Lipman Tunnel site, although trash cleanup is recommended.

SITE ID-0054-00009: RED ELEPHANT MILLSITE (HA-326m)

Located on Elk Creek ½ mile upstream from the Croy Creek road, the Red Elephant millsite and tailings are the prominent remains of one of the largest producers of lead, zinc, and silver in the Hailey region. The dark grey, fairly coarse (up to 1/4 inch in diameter) tailings cover about 7 acres. The tailings consist principally of limestone and argillite pieces with little evidence of oxidized iron stain or sulfides. The tailings area, which is within the floodplain of Elk Creek, is approximately ½ mile long, 150 feet wide, and an average of 3 feet deep. Five small earthen impoundment dams have been breached by the creek, which flows through the tailings along the entire length of the site. Where it goes through otherwise bare tailings, the creek is bordered by a zone (up to 5 feet wide) of grass, reeds, some moss, and marshy plants. Deer scat and tracks are abundant on the tailings next to the creek.

The millsite (Figures 9-2 and 9-3) consists of a concrete foundation, 100 feet long by 60 feet wide (Figure 9-4). Remnants of three concrete walls and one wooden one remain, but no high walls or equipment is left standing. The millsite is just west of the road up Red Elephant Gulch. On the east side of the road are two small (15 feet wide) ore stockpiles or dumps. The main rock types present are limestone and argillite.

Where it runs through the tailings, Elk Creek is clear and flows at an approximate rate of 200 gallons per minute. The creek is typically bordered by grasses and other riparian vegetation (Figures 9-5 and 9-6). The tailings do not appear to be oxidizing, but the vegetation on them is sparse except along the creek. Measurements of discharge, water pH, and specific conductivity above (site C) and below (site F) the tailings and at four sites (D, B, A, and E) within the tailings were identical. Creek water pH was 8.5 - 8.6 and the specific conductivity was 200-210 µS, suggesting good water. A sample of the tailings was collected from several locations in the pile for analysis. In general, the tailings could use some topsoil to assist with revegetation, but overall, the tailings did not appear to significantly affect or degrade the water quality in Elk Creek.

REFERENCES

SITE INSPECTION REPORTS FOR MINES IN RED ELEPHANT GULCH
BUREAU OF LAND MANAGEMENT
ABANDONED/INACTIVE MINE LAND INVENTORY
FIELD CHECKLIST

A. SITE IDENTIFICATION
ID Number: 1 D - 0 0 5 4 - 0 0 0 0 7
Site/Mine Name: Red Elephant, main workings (HA-326) Primary Commodity: Zn, Pb, Ag, Cu

B. LOCATION DATA
USGS Quad: Richardson Summit 7½-minute LAT: ___ LONG: ___ OR
UTM Coord: 4818849 N 708067.2 E Zone 11 North AND
Township: 2 N Range: 17 E Section: 22 Subdivision: NW¼ NW¼
Meridian: Boise 08 County: Blaine 013
Surface: BLM X / Non-BLM ___ Mineral Estate: BLM X / Non-BLM ___ Patented

C. ACCESS
Visible from: Nearest road X / Trail ___ / Population center ___
Access by: 2wd ___ / 4wd X / Hike ___ / Other ___
Access disturbance in need of reclamation: Length ___ / Width ___ / Acres ___
Road Log: Passable, rocky 4-wheel drive road to reach main Red Elephant workings. The road is okay up to the saddle to the east (to the O.K. vein workings).

D. SITE DESCRIPTION
Acreage: ___ Elevation: 6900 feet
General slope (degrees): 0-10 ___ / 11-35 X ___ / >35 ___
Floodplain: Disturbance in ___ / Adjacent to ___ / NA ___
Recent mineral activity ___ Describe: ___

E. MINING/EXPLORATION FEATURES (Provide numbers of features)
Open adits 7 / Closed adits 8 / Open inclines ___ / Closed inclines ___
Open shafts ___ / Closed shafts 2 / Stopes 1 big and open
Other openings ___ Type ___
Trenches 1 Length >300 feet / Prospects 1-4 / Open drill holes ___
Pits >30 ft. deep ___ / Pits <30 ft. deep ___ / Pit highwall length ________
Waste dumps: <0.1 ac ___ / 0.1 - 5 ac 12-14 ___ / >5 ac 2-3 ___
Tailings: <0.1 ac ___ / 0.1 - 5 ac ___ / >5 ac ___
Heaps ___ / Dredge ___
Ponds ___ / Dams ___
Mills ___ Type ___ , _____ , _____
Explosives ___ Describe: ___
Equipment/Machinery ___ / Headframes ___ / Trestles/tramways ___
Powerlines ___
Structures X Type Large wooden ore bin at No. 2 Tunnel; ore bin is historic structure.
Condition: Good ___ / Fair ___ / Poor ___ / Number Locked ___
Homesites ___
Other: old iron boiler.

(03/95)

11
F. ENVIRONMENTAL FEATURES

VEGETATION
Vegetation: Healthy X / Stressed _____ / Dead _____ / Nonexistent _____
Evidence of natural revegetation: _____ / Describe: Lush grass and reeds beside adits with water seepage (#9)

ANIMALS
Evidence: X / Presence: ___ / Describe: deer, sage hen

GEOLOGY black argillite, limestone, sandstone
Staining of soils _____ Describe:
Sulfide minerals Yes Type(s): pyrite, galena, sphalerite, tetrahedrite
Tailings: Confined _____ / Unconfined _____ / Unknown _____

HYDROLOGY

<table>
<thead>
<tr>
<th>Water flowing from workings:</th>
<th>pH</th>
<th>Conductivity</th>
<th>Flow (GPM)</th>
<th>Sketch #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing water in workings:</td>
<td>#9</td>
<td>8.1</td>
<td>320</td>
<td><1-2</td>
</tr>
<tr>
<td>Water through/over tailings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>waste rock:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ore:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjacent water sources:

<table>
<thead>
<tr>
<th>Ground water:</th>
<th>Type</th>
<th>pH</th>
<th>Conductivity</th>
<th>Flow (GPM)</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface H2O above site:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface H2O below site:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence of aquatic life: _____ Location: _________ Describe: __________________________

Water bed color: White ____ / Yellow ____ / Yellow-Orange ____ / Orange ____
Brown X / Green ____ / Grey-Black X / Other looks good

Samples collected: ____ Sketch #(s): ______________________________

G. POTENTIAL HAZARDOUS MATERIALS (Provide numbers of features)

Chemical piles or spills _____ / Acid or Chemical odor _____ / Asbestos _____
Petrochemical Products _____ / Dump sites _____
Power Substations _____ / Transformers _____

Barrels, Tanks, Containers _____ Leaking: _____ Contents: ________________________
Evidence of Underground Storage Tanks: _____ Describe: _______________________

Other: very clean

(03/95)
H. RECLAMATION

SITE CONDITIONS
Erosion: Rills _____ / Gullies _____ / Sheetwash _____
Unstable Rock _____ / Slope instability _____ / Wind erosion _____

MITIGATION STATUS
None _____ / Fencing _____ / Signs _____ / Safety hazards mitigated _____
Other: __

Mitigation condition: Good _____ / Fair _____ / Poor _____
Site ID tags: _____ / Locations: ______________________________________

OPTIONAL: Identify the critical reclamation measures needed:

_____ Cable nets, grates
_____ Permanent seal
X Gates
_____ Backfill openings, pit
_____ Recontour
X Fences
X Warning signs
_____ Plug open drill holes
_____ Topsoil, soil amendments
_____ Revegetation
_____ Stabilize/destroy structures
_____ Drainage control
_____ Water treatment
_____ Wildlife closure
_____ No action
_____ Trash / clean up
Other: __

I. SITE SKETCH
Show orientation, approximate scale, access route, adjacent drainages, and locations of features on attached sketch map. Use the feature symbols provided in the map legend on page 6.

J. GLOBAL POSITIONING SYSTEM DATA HA326A.cor

K. PHOTOGRAPHS
Number of photographs taken: Roll 2 (Neg. 9073), frames #22a-25a; Roll 3 (Neg. 9072), Frames #1-19

L. ACTION
Site requires immediate investigation _____ by: Law Enforcement _____ / BLM _____
HAZMAT _____ / Other __

Reason: __

(03/95)
M. FEATURES - PROVIDE DIMENSIONS IN FEET.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Length (Down)</th>
<th>Width (Across Top)</th>
<th>Height or Depth (Thickness)</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adit #1</td>
<td>>50 feet</td>
<td>4 feet</td>
<td>2 feet</td>
<td>2-foot opening; should be closed.</td>
</tr>
<tr>
<td>Dump #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adit #2</td>
<td></td>
<td></td>
<td></td>
<td>caved</td>
</tr>
<tr>
<td>Dump #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adit #3 (No. 6 level, Red Elephant Mine)</td>
<td>60 feet</td>
<td>80 feet</td>
<td>10 feet</td>
<td>caved</td>
</tr>
<tr>
<td>Dump #3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adit #4 (No. 2 Red Elephant tunnel)</td>
<td>open >40 feet</td>
<td>8 feet</td>
<td>6-8 feet</td>
<td>door is unlocked and open; adit is posted "No Trespassing"</td>
</tr>
<tr>
<td>Dump #4</td>
<td>60 feet</td>
<td>-200 feet</td>
<td>30-50 feet</td>
<td></td>
</tr>
<tr>
<td>Ore bin</td>
<td>20 feet</td>
<td>25 feet</td>
<td>30 feet</td>
<td>historic wooden structure; in good shape</td>
</tr>
<tr>
<td>Adit #5 (No. 1 Red Elephant tunnel)</td>
<td>4 feet</td>
<td>6 feet</td>
<td></td>
<td>open; on road. Bad air; DANGEROUS</td>
</tr>
<tr>
<td>Dump #5</td>
<td>50 feet</td>
<td>50 feet</td>
<td>10 feet</td>
<td>totally collapsed</td>
</tr>
<tr>
<td>Adit #6 (upper Red Elephant tunnel (unnumbered))</td>
<td>30 feet</td>
<td>30 feet</td>
<td>25 feet</td>
<td>1"x6" lumber scraps on dump</td>
</tr>
<tr>
<td>Dump #6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft(?) #1</td>
<td></td>
<td></td>
<td></td>
<td>totally caved</td>
</tr>
<tr>
<td>Prospect #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adit #7</td>
<td></td>
<td></td>
<td></td>
<td>totally caved</td>
</tr>
<tr>
<td>Dump #7</td>
<td>20 feet</td>
<td>50 feet</td>
<td>5 feet</td>
<td></td>
</tr>
<tr>
<td>Adit #8</td>
<td></td>
<td></td>
<td></td>
<td>caved</td>
</tr>
<tr>
<td>Trench #1</td>
<td>10 feet</td>
<td>20 feet</td>
<td>4-8 feet</td>
<td></td>
</tr>
<tr>
<td>Adit #9 (O.K. tunnel)</td>
<td></td>
<td></td>
<td></td>
<td>1-foot opening; water seep</td>
</tr>
<tr>
<td>Dump #9</td>
<td>100 feet</td>
<td>50 feet</td>
<td>20-30 feet</td>
<td></td>
</tr>
<tr>
<td>Adit #10 (Point Lookout tunnel)</td>
<td></td>
<td></td>
<td></td>
<td>4-foot by 2½-foot opening; on jeep trail. Close.</td>
</tr>
<tr>
<td>Dump #10</td>
<td>30 feet</td>
<td>30 feet</td>
<td>10 feet</td>
<td></td>
</tr>
<tr>
<td>Dump #11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adit #12</td>
<td></td>
<td></td>
<td></td>
<td>open</td>
</tr>
<tr>
<td>Adit #13</td>
<td></td>
<td></td>
<td></td>
<td>semi-caved</td>
</tr>
<tr>
<td>Dump #13</td>
<td>40 feet</td>
<td>20 feet</td>
<td>5 feet</td>
<td></td>
</tr>
<tr>
<td>Adit #14</td>
<td></td>
<td></td>
<td></td>
<td>open</td>
</tr>
<tr>
<td>Adit #15</td>
<td></td>
<td></td>
<td></td>
<td>caved</td>
</tr>
<tr>
<td>Feature</td>
<td>Length (Down)</td>
<td>Width (Across Top)</td>
<td>Height or Depth (Thickness)</td>
<td>Mitigation</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Dump #15</td>
<td>20 feet</td>
<td>20 feet</td>
<td>10 feet</td>
<td></td>
</tr>
<tr>
<td>Slope #1</td>
<td>20 feet</td>
<td>30 feet</td>
<td>60 feet</td>
<td>DANGEROUS</td>
</tr>
<tr>
<td>Adit #16</td>
<td></td>
<td></td>
<td></td>
<td>1-foot opening</td>
</tr>
<tr>
<td>Dump #16</td>
<td></td>
<td></td>
<td></td>
<td>small</td>
</tr>
</tbody>
</table>

Field Notes:

Adit #1 is the lower adit by the road (Figure 7-4). This adit has a 2-foot opening that should be closed.

Adit #2 is on the west side of the road opposite Adit #1. A large dump is associated with Adit #2 (Figure 7-5).

Adit #3 is the No. 6 level of the Red Elephant Mine (Fryklund, 1950). Lush vegetation is growing in a swampy area near the portal (Figure 7-6), but there is no real discharge from the portal. The No. 6 level dump (Dump #3) is the lower, large dump in the gulch, and the creek has cut through it (Figure 7-7). Mature vegetation covers the dump.

Adit #4 (Figure 7-8) is the No. 2 tunnel of the Red Elephant Mine (Fryklund, 1950). The adit has a wooden door which is in good shape but not locked. Rocks are holding the door closed. The adit appears open and the tunnel is in good condition beyond the door. There is a “No Trespassing” sign on the adit (Figure 7-9). Some wetland vegetation, probably growing in a seasonal water seep, are near the adit. No discoloration of the vegetation or other adverse effects were noted. The dump is composed of siliceous argillite with pyrite and minor sulfide material (Figures 7-10 and 7-11). The rusty rails, scrap metal, and lumber on the dump should be cleaned up. A huge wooden ore bin is at this site (Figures 7-10, 7-11, and 7-12). This is a historic structure and should be preserved.

Adit #5 is the No. 1 tunnel of the Red Elephant Mine (Fryklund, 1950). The portal to this adit is wide open, with a pile of argillite holding the door open (Figures 7-13 and 7-14). The adit is 4 feet wide by 6 feet high, and is in very competent rocks. The air from the adit has a musty, “bad air” smell and no ventilation. Because the adit is easily accessible, it is very dangerous. Figure 7-15 shows the relationship between the dumps for Adit #4 (Red Elephant No. 2), Adit #5 (Red Elephant No. 1), and Adit #6.

East of the saddle are pits and numerous adits, some caved and some partly open. Prospect #1, Shaft #1 (the Caledonia shaft; Figure 7-16), and Adit #7 are on the east of the saddle in the O.K. vein area. Figure 7-17 shows and overview of the Red Elephant workings near the head of Bullion Gulch.

Water is standing on one side of Adit #9 (Figure 7-18). The water seeping from the adit looks good and feeds a wetland that has reeds growing in it (Figure 7-19).
Adit #10, which is open, is along the four-wheel-drive road down Bullion Gulch (Figure 7-20). This is the Point Lookout Tunnel (Fryklund, 1950)

There is no Adit #11; this number was skipped when the features at the site were numbered. Adit #12 is below the shaft and along the road (Figure 7-21).

Dump #13 is about 40 feet by 20 feet by 5 feet, and is slumped on the corner. Adit #14 is open. Adit #15 is caved (Figure 7-22), and the road runs across the associated dump. In the trees near these adits is an open stope (Figures 7-23 and 7-24). This stope is extremely dangerous. A jeep trail runs just below these workings.

Adit #16 has a 1-foot opening under a tree. The rest of the adit is caved. A small dump is in the trees along the drainage.

Trench #1 is an open cut on the O.K. vein(?). The trench trends N. 80° W. It is about 4-8 feet deep at the maximum and is heavily vegetated with sagebrush (Figures 7-25 and 7-26). The trench poses no significant danger.

INSPECTED BY: Virginia Gillerman (IGS) TITLE: Geologist DATE: 9-11-97 and 9-12-97
INSPECTED BY: Gregg Beukelman TITLE: Geologist DATE: 9-12-97

(03/95)
Figure 7-1. Topographic map of the Red Elephant Mine, Blaine County, Idaho (U.S. Geological Survey Richardson Summit 7.5-minute topographic map).
Figure 7-2. Map of the Red Elephant Mine, showing features logged during the site inspection. No GPS data is available for Adits #1 and #2 or the Site ID Point. The ◎ symbol indicates a dump that was too small for the perimeter to be logged.
Figure 7-3. Sketch map of key features at the Red Elephant Mine. Note the positions of Adits #1 and #2 and the Site ID Point.
<table>
<thead>
<tr>
<th>Roll Number</th>
<th>Frame Number</th>
<th>Direction</th>
<th>Location/Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (Neg. 9073)</td>
<td>22a</td>
<td>looking east</td>
<td>Adit #1 (Lower adit next to road)</td>
</tr>
<tr>
<td>2 (Neg. 9073)</td>
<td>23a</td>
<td>looking NW</td>
<td>Adit #2 (caved) and dump; some lumber on dump.</td>
</tr>
<tr>
<td>2 (Neg. 9073)</td>
<td>24a</td>
<td>looking south</td>
<td>Rain clouds moving in</td>
</tr>
<tr>
<td>2 (Neg. 9073)</td>
<td>25a-26a</td>
<td></td>
<td>Scenery. Rained out.</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>1</td>
<td>looking north</td>
<td>No. 6 level dump (Adit #3); lower big dump in Red Elephant Gulch</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>2</td>
<td>looking west</td>
<td>No. 6 level (Adit #3) portal; caved, overgrown with vegetation</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>3</td>
<td>looking NE</td>
<td>No. 2 tunnel portal (Adit #4)</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>4</td>
<td>looking NE</td>
<td>No. 2 tunnel and gate; "No Trespassing" sign</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>5</td>
<td>looking west</td>
<td>Ore bin at the No. 2 tunnel (Dump #4), next to road</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>6</td>
<td>looking north</td>
<td>No. 1 tunnel portal (Adit #5)</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>7</td>
<td>looking north</td>
<td>No. 1 tunnel (Adit #5) – interior, wide open</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>8</td>
<td>looking west</td>
<td>Shaft #1 (Caledonia shaft (?)), caved and revegetated</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>9</td>
<td>looking SW</td>
<td>O.K. tunnel (Adit #9) – 1-foot opening, almost impossible to get to</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>10</td>
<td>looking NE</td>
<td>Wetland with grass and reeds, in front of Adit #9</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>11</td>
<td>looking south</td>
<td>Adit #10, on jeep trail/4-wheel drive road in woods; 4-foot by 2½-foot opening</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>12</td>
<td>looking SW</td>
<td>Adit #12 – open adit below the shaft and along the road</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>13</td>
<td>looking NW</td>
<td>Stope #1</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>14</td>
<td>looking south</td>
<td>Open Stope #1 – 20 feet by 30 feet by 60 feet deep; DANGEROUS</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>15</td>
<td>looking south</td>
<td>Adit #13(?) – semi-caved adit leads to the open stope</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>16</td>
<td>looking NE</td>
<td>Adit #15 portal, caved; Bullion Gulch workings, with the Pioneer Range in the background</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>17</td>
<td>looking NW</td>
<td>Trench #1, which trends approximately N. 80° W.</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>18</td>
<td>" S.70°E</td>
<td>Trench #1, on the outcrop of the quartz vein with gossan along the fault</td>
</tr>
<tr>
<td>(03/95)</td>
<td>19</td>
<td>looking NE</td>
<td>Overview of the main Red Elephant workings from the basalt hill west of mine</td>
</tr>
</tbody>
</table>

20
BLM AML INVENTORY
SUPPLEMENTAL OFFICE DATA SHEET

A. SITE IDENTIFICATION
Other BLM ID Number: ____________________________
Locatable _____ / Leasable _____ / Salable _____
Operator (last known): ____________________________
Commodities: Primary _____ / Secondary ____________________________
Other Agency ID Number: _____ Agency: ____________________________

B. LOCATION DATA
Site is in _____ or within a mile _____ of:
ACEC _____ / WSA _____ / Wilderness Area _____ / Riparian Area _____
Nominated for Designation to National Wild & Scenic River System _____

C. ACCESS
Distance in Miles to Closest Public:
Road _______ Dwelling _______ School _______
Potable Water _______ Water Source _______ Trail _______
Campground/Picnic Area _______ Other Public Use _______

D. SITE DESCRIPTION
Nearest named drainage: _____ Distance: _____

G. POTENTIAL HAZARDOUS MATERIALS
Site is under regulatory action _____
CERCLIS Number _____ OR
Federal Docket Number

H. RECLAMATION: Closure Information
Clearances: Threatened & Endangered Species ____________________________
Cultural Resources ____________________________
Historic ____________________________
Other ____________________________

Date reclamation completed: ____________________________ Cost: ____________________________
Type of closure: ____________________________ Comments: ____________________________

Monitoring frequency: _______ Dates of monitoring visits: ____________________________

(Note: The letters for the items above correspond to those on pp. 1 - 3 of this Checklist)

(03/95)
I. INTERVIEWS

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

(03/95)
Figure 7-4. Open Adit #1, the lower adit next to the road, at the Red Elephant Mine. The view is to the east (Roll Hailey 2 (9073), frame #22a; photograph by Virginia S. Gillerman; September 11, 1997).

Figure 7-5. Dump for Adit #2 at the Red Elephant Mine. The view is to the northwest (Roll Hailey 2 (9073), frame #23a; photograph by Virginia S. Gillerman, September 11, 1997).
Figure 7-6. Caved portal of Adit #3 (Red Elephant No. 6 level) at the Red Elephant Mine. The view is to the north (Roll Hailey 3 (9072), frame #2; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-7. Dump for Adit #3 (No. 6 level) at the Red Elephant Mine. The view is to the north (Roll Hailey 3 (9072), frame #1; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 7-8. Adit #4 (No. 2 level) at the Red Elephant Mine. The view is to the northeast (Roll Hailey 3 (9072), frame #3; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-9. Close-up of the gate on Adit #4 (No. 2 level) at the Red Elephant Mine, showing the “No Trespassing” sign. The view is to the northeast (Roll Hailey 3 (9072), frame #4; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 7-10. Ore bin at the foot of Dump #4 at the Red Elephant Mine. The view is to the southeast (Roll Hailey 2 (9073), frame #25a; photograph by Virginia S. Gillerman, September 11, 1997).

Figure 7-11. Ore bin at the foot of Dump #4 at the Red Elephant Mine. The view is from the south (Roll Hailey 2 (9073), frame #24a; photograph by Virginia S. Gillerman, September 11, 1997).
Figure 7-12. Ore bin on Dump #4 at the Red Elephant Mine. The view is to the west (Roll Hailey 3 (9072), frame #5; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-13. Portal of Adit #5 at the Red Elephant Mine. The view is to the north (Roll Hailey 3 (9072), frame #6; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 7-14. Open door and interior of Adit #5 at the Red Elephant Mine. The view is to the north (Roll Hailey 3 (9072), frame #7; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-15. Overview of the main Red Elephant workings, showing the relationship between the dumps for Adits #4, #5, and #6. The view is to the northeast (Roll Hailey 3 (9072), frame #19, photograph by Virginia S. Gillerman, September 12, 1997).
Figure 7-16. Shaft #1 (Caledonia Shaft) at the Red Elephant Mine. The view is to the west (Roll Hailey 3 (9072), frame #8; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-17. Overview of the Red Elephant workings at the head of Bullion Gulch. The Pioneer Mountains are in the background. The view is to the northeast (Roll Hailey 3 (9072), frame #16; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 7-18. Adit #9 at the Red Elephant Mine. The view is to the southwest (Roll Hailey 3 (9072), frame #9; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-19. Grass and reeds growing in a wetland in front of Adit #9 at the Red Elephant Mine. The view is to the northeast (Roll Hailey 3 (9072), frame #10; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 7-20. Adit #10 at the Red Elephant Mine. The view is to the south (Roll Hailey 3 (9072), frame #11; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-21. Adit #12 at the Red Elephant Mine. The view is to the southwest (Roll Hailey 3 (9072), frame #12; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 7-22. Mostly caved Adit #15 at the Red Elephant Mine. The view is to the south (Roll Hailey 3 (9072), frame #15; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-23. Open stope at the Red Elephant Mine. The view is to the northwest (Roll Hailey 3 (9072), frame #13; photograph by Virginia S. Gillerman, September 12, 1997).
Figure 7-24. Wall of the open stope at the Red Elephant Mine. The view is to the south (Roll Hailey 3 (9072), frame #14; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 7-25. Trench #1 at the Red Elephant Mine. The view is to the northwest (Roll Hailey 3 (9072), frame #17; photograph by Virginia S. Gillerman, September 12, 1997).
Figure 7-26. Trench #1 at the Red Elephant Mine, where the trench is excavated along the outcrop. The photograph is looking S. 70° E. (Roll Hailey 3 (9072), frame #18; photograph by Virginia S. Gillerman; September 12, 1997).
A. SITE IDENTIFICATION
ID Number: I D - 0 0 5 4 - 0 0 0 0 0 8
Site/Mine Name: Lipman tunnel (Red Elephant Mine) Primary Commodity: Zn, Pb, Ag, Cu

B. LOCATION DATA
USGS Quad: Richardson Summit 7.5-minute LAT: ___ LONG: ___ OR
UTM Coord: 4818167 N 707768 E Zone: 11 North AND
Township: 2 N Range: 17 E Section: 21 Subdivision: NE¼ SW¼
Meridian: Boise 08 County: Blaine 013
Surface: BLM X / Non-BLM X Mineral Estate: BLM ___ / Non-BLM ___

C. ACCESS
Visible from: Nearest road X / Trail ___ / Population center ___
Access by: 2wd X / 4wd ___ / Hike ___ / Other ___
Access disturbance in need of reclamation: Length ___ / Width ___ / Acres ___
Road Log: two-wheel drive road along Elk Creek

Recent human use: Yes Describe: Campsite for humans with horses; road probably used by hunters

D. SITE DESCRIPTION
Acreage: ___ Elevation: 6247 feet
General slope (degrees): 0-10 ___ / 11-35 X ___ / >35 ___
Floodplain: Disturbance in ___ / Adjacent to X ___ / NA ___
Recent mineral activity ___ Describe: ___

E. MINING/EXPLORATION FEATURES (Provide numbers of features)
Open adits ___ / Closed adits 1 / Open inclines ___ / Closed inclines ___
Open shafts ___ / Closed shafts ___ / Stopes ___
Other openings ___ Type ___
Trenches ___ Length ___ ___ / Prospects ___ / Open drill holes ___
Pits >30 ft. deep ___ / Pits <30 ft. deep ___ / Pit highwall length ___
Waste dumps: <0.1 ac X ___ / 0.1 - 5 ac ___ / >5 ac ___
Tailings: <0.1 ac ___ / 0.1 - 5 ac ___ / >5 ac ___
Heaps ___ / Dredge ___
Ponds ___ / Dams ___
Mills ___ Type ___ , ___ , ___
Explosives ___ Describe: ___
Equipment/Machinery ___ / Headframes ___ / Trestles/tramways ___
Powerlines ___
Structures ___ Type ___
Condition: Good ___ / Fair ___ / Poor ___ / Number Locked ___
Homesites ___
Other: ___

(03/95)
F. ENVIRONMENTAL FEATURES

VEGETATION

Vegetation: Healthy X / Stressed / Dead / Nonexistent
Evidence of natural revegetation: / Describe: Lush wetland vegetation

ANIMALS

Evidence: X / Presence: / Describe: Horse droppings on the dump

GEOLOGY

Limestone with some quartzite and argillite

Staining of soils Describe:
Sulfide minerals Type(s): minimal
Tailings: Confined / Unconfined / Unknown

HYDROLOGY

Water flowing from workings: #1 pH Conductivity Flow (GPM) Sketch #
Standing water in workings: ___ ___ ___ ___
Water through/over tailings: ___ ___ ___ ___
 waste rock: ___ ___ ___ ___
 ore: ___ ___ ___ ___

Adjacent water sources:
 Type pH Conductivity Flow (GPM) Distance
 Ground water: fed by spring ___ ___ ___ ___
 Surface water: ___ ___ ___ ___
 Surface H2O above site: ___ ___ ___ ___
 Surface H2O below site: ___ ___ ___ ___

Evidence of aquatic life: ___ Location: ___ Describe:

Water bed color: White / Yellow / Yellow-Orange / Orange
 Brown X / Green / Grey-Black X / Other Looks good; no precipitate

Samples collected: ___ Sketch #(#s):

G. POTENTIAL HAZARDOUS MATERIALS (Provide numbers of features)

Chemical piles or spills / Acid or Chemical odor / Asbestos
Petrochemical Products / Dump sites
Power Substations / Transformers
Barrels, Tanks, Containers Leaking: Contents:
Evidence of Underground Storage Tanks: Describe:

Other:

(03/95)
H. RECLAMATION

SITE CONDITIONS
Erosion: Rills _____ / Gullies _____ / Sheetwash _____
Unstable Rock _____ / Slope instability _____ / Wind erosion _____

MITIGATION STATUS
None _____ / Fencing _____ / Signs _____ / Safety hazards mitigated _____
Other: __

Mitigation condition: Good _____ / Fair _____ / Poor _____
Site ID tags: _____ / Locations: _____________________________________

OPTIONAL: Identify the critical reclamation measures needed:

_____ Cable nets, grates
_____ Permanent seal
_____ Gates
_____ Backfill openings, pit
_____ Recontour
_____ Fences
_____ Warning signs
_____ Plug open drill holes
_____ Other: _________________________________

I. SITE SKETCH
Show orientation, approximate scale, access route, adjacent drainages, and locations of features on attached sketch map. Use the feature symbols provided in the map legend on page 6.

J. GLOBAL POSITIONING SYSTEM DATA HA326L.cor

K. PHOTOGRAPHS
Number of photographs taken: Roll 3 (Neg. 9072), Frames 20-22, 26

L. ACTION
Site requires immediate investigation _____ by: Law Enforcement _____ / BLM _____
HAZMAT _____ / Other __

Reason: ___

(03/95)
M. FEATURES - PROVIDE DIMENSIONS IN FEET.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Length</th>
<th>Width</th>
<th>Height or Depth</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adit #1 (Lipman tunnel)</td>
<td></td>
<td></td>
<td></td>
<td>caved</td>
</tr>
<tr>
<td>Dump #1</td>
<td>30 feet</td>
<td>40 feet</td>
<td>10 feet</td>
<td></td>
</tr>
<tr>
<td>Collapsed building (wood with nails on top of the dump)</td>
<td></td>
<td></td>
<td></td>
<td>clean up</td>
</tr>
<tr>
<td>Collapsed ore bin (below prospect)</td>
<td></td>
<td></td>
<td></td>
<td>remove</td>
</tr>
</tbody>
</table>

Field Notes:

The Lipman, or Red Elephant Consolidated, Tunnel (Figure 8-3) was started about 1912 to intersect the Red Elephant vein at depth beneath the older workings of the mine (Bell, 1913). Water discharge from the spring at the adit appears to feed the creek much of the year (Figure 8-4). A collapsed building on the dump has old nails and some recent trash scattered around it (Figure 8-5). Otherwise, there are no problems at this site.

There is a collapsed ore bin (Figure 8-6) at a prospect downstream from Adit #1 and on the west side of the creek. Lumber, nails, and scrap iron are scattered around this area.
Figure 8-1. Topographic map of the Lipman tunnel (Red Elephant Mine), Blaine County, Idaho (U.S. Geological Survey Richardson Summit 7.5-minute topographic map).
Figure 8-2. Map of the Lipman tunnel (Red Elephant Mine) showing features logged at the site.
BLM AML INVENTORY FIELD CHECKLIST
PHOTO LOG

ID Number: ID-0054-00008

Fill out the following for each photo:

<table>
<thead>
<tr>
<th>Roll Number</th>
<th>Frame Number</th>
<th>Direction</th>
<th>Location/Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (Neg. 9072)</td>
<td>20</td>
<td>looking east</td>
<td>Lipman tunnel (Adit #1) portal</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>21</td>
<td>looking north</td>
<td>Lipman tunnel (Adit #1) – water and lush vegetation</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>22</td>
<td></td>
<td>Collapsed building</td>
</tr>
<tr>
<td></td>
<td>break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>26</td>
<td></td>
<td>Collapsed ore bin at prospect below Adit #1</td>
</tr>
</tbody>
</table>

(03/95)
A. SITE IDENTIFICATION
Other BLM ID Number: ________________________________
Locatable _____ / Le asable _____ / Salable _____
Operator (last known): ________________________________
Commodities: Primary _____ / Secondary ______________________
Other Agency ID Number: ____ / Agency: _______________________

B. LOCATION DATA
Site is in _____ or within a mile _____ of:
ACEC _____ / WSA _____ / Wilderness Area _____ / Riparian Area _____
Nominated for Designation to National Wild & Scenic River System _____

C. ACCESS
Distance in Miles to Closest Public:
Road _____ Dwellings _____ School _____
Potable Water _____ Water Source _____ Trail _____
Campground/Picnic Area _____ Other Public Use _____

D. SITE DESCRIPTION
Nearest named drainage: _____ Distance: _____

G. POTENTIAL HAZARDOUS MATERIALS
Site is under regulatory action _____
CERCLIS Number _____ OR
Federal Docket Number

H. RECLAMATION: Closure Information
Clearances:
Threatened & Endangered Species ________________________________
Cultural Resources ________________________________
Historic ________________________________
Other ________________________________

Date reclamation completed: ________________________________
Type of closure: ________________________________ Cost: ________________________________
Comments: __
__
__
__
__

Monitoring frequency: _______ Dates of monitoring visits: ________________________________
__
__
__
__

(NOTE: The letters for the items above correspond to those on pp. 1 - 3 of this Checklist)

(03/95)
I. INTERVIEWS

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>

(03/95)
Figure 8-3. Caved Adit #1 at the Lipman Tunnel of the Red Elephant Mine. The view is to the east (Roll Hailey 3 (9072), frame #20; photograph by Virginia S. Gillerman, September 12, 1997).

Figure 8-4. Water and lush vegetation near the portal of Adit #1 at the Lipman Tunnel of the Red Elephant Mine. The view is to the north (Roll Hailey 3 (9072), frame #21; photograph by Virginia S. Gillerman, September 12, 1997).
Figure 8-5. Collapsed building at the Lipman Tunnel of the Red Elephant Mine (Roll Hailey 3 (9072), frame #22; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 8-6. Collapsed ore bin at the prospect below the Lipman Tunnel at the Red Elephant Mine. The view is to the west (Roll Hailey 3 (9072), frame #26; photograph by Virginia S. Gillerman; September 12, 1997).
ABANDONED/INACTIVE MINE LAND INVENTORY
FIELD CHECKLIST

A. SITE IDENTIFICATION
ID Number: 1D - 00 54 - 00 00 09
Site/Mine Name: Red Elephant millsite (HA-326M) Primary Commodity: Pb, Zn, Ag

B. LOCATION DATA
USGS Quad: Richardson Summit 7.5-minute LAT: ___ LONG: ___ OR
UTM Coord: 15801224_N 2323220_E Zone 11 AND
Township: 2N Range: 17E Section: 28 Subdivision: SE1/4 SE1/4
Meridian: Boise 08 County: Blaine 013
Surface: BLM X / Non-BLM ___ Mineral Estate: BLM ___ / Non-BLM ___

C. ACCESS
Visible from: Nearest road X / Trail ___ / Population center ___
Access by: 2wd X / 4wd ___ / Hike ___ / Other ___
Access disturbance in need of reclamation: Length ___ / Width ___ / Acres ___
Road Log: Along road.

Recent human use: X Describe: Beverage cans by road

D. SITE DESCRIPTION
Acreage: ___ substantial Elevation: 5900±25 feet
General slope (degrees): 0-10 X / 11-35 ___ / >35 ___
Floodplain: Disturbance in X / Adjacent to ___ / NA ___ Elk Creek
Recent mineral activity ___ Describe: ___

E. MINING/EXPLORATION FEATURES (Provide numbers of features)
Open adits ___ / Closed adits ___ / Open inclines ___ / Closed inclines ___
Open shafts ___ / Closed shafts ___ / Stopes ___
Other openings ___ Type ___
Trenches ___ Length _____ / Prospects ___ / Open drill holes ___
Pits >30 ft. deep ___ / Pits <30 ft. deep ___ / Pit highwall length _______
Waste dumps: <0.1 ac X / 0.1-5 ac ___ / >5 ac ___
Tailings: <0.1 ac ___ / 0.1 - 5 ac ___ / >5 ac ___ -½ mile long by ~150 ft. wide by ~3 ft. deep
Heaps ___ / Dredge ___
Ponds ___ / Dams X ___ Remains of log tailings dams
Mills 1 Type (nothing left) jigs, jigs and tables
Explosives ___ Describe: ___
Equipment/Machinery ___ / Headframes ___ / Trestles/tramways ___
Powerlines ___
Structures X Type concrete foundations (3), 1 wood foundation
Condition: Good ___ / Fair X ___ / Poor ___ / Number Locked ___
Homesites ___
Other: ___

(03/95)
F. ENVIRONMENTAL FEATURES

VEGETATION
Vegetation: Healthy _some_ / Stressed _X_ / Dead _____ / Nonexistent _X_
Evidence of natural revegetation: _Yes_ / Describe: Where the creek goes through the tailings, it is bordered by 0-5 feet of grass, reeds, some marsh plants, and moss. The tailings are about 10 percent vegetated with grass (often stressed) and some areas have no vegetation

ANIMALS
Evidence: _X_ / Presence: __ / Describe: Deer scat abundant next to creek where it cuts through Tailings Pile #1

GEOLOGY limestone and argillite
Staining of soils _____ Describe: __
Sulfide minerals _____ Type(s): __
Tailings: Confined _X_ / Unconfined _X_ / Unknown _____

HYDROLOGY

<table>
<thead>
<tr>
<th>Water flowing from workings:</th>
<th>pH</th>
<th>Conductivity</th>
<th>Flow (GPM)</th>
<th>Sketch #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing water in workings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water through/over tailings:</td>
<td>Pile #1</td>
<td>8.5</td>
<td>210 μs</td>
<td>200</td>
</tr>
<tr>
<td>waste rock:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ore:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjacent water sources:

<table>
<thead>
<tr>
<th>Surface water: Elk Creek above mill</th>
<th>pH</th>
<th>Conductivity</th>
<th>Flow (GPM)</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water: Elk Creek at the mill</td>
<td>8.6</td>
<td>210 μs</td>
<td>200+</td>
<td>Site A</td>
</tr>
<tr>
<td>Surface H2O above tails:</td>
<td>8.5</td>
<td>200 μs</td>
<td>200</td>
<td>Site C</td>
</tr>
<tr>
<td>Surface H2O below tails:</td>
<td>8.6</td>
<td>210 μs</td>
<td>200</td>
<td>Site F</td>
</tr>
</tbody>
</table>

Evidence of aquatic life: _____ Location: ___________ Describe: ____________________________

Water bed color: White _/_ Yellow _/_ Yellow-Orange _/_ Orange _
Brown _X_/ Green _/_ Grey-Black _X_/ Other ____
No iron staining or evidence of oxidizing sulfides

Samples collected: _____ Sketch #(_/_) ____________________________

G. POTENTIAL HAZARDOUS MATERIALS (Provide numbers of features)

Chemical piles or spills _____ / Acid or Chemical odor _____ / Asbestos _____
Petrochemical Products _____ / Dump sites _____
Power Substations _____ / Transformers _____

Barrels, Tanks, Containers _____ Leaking: _____ Contents: ____________________________
Evidence of Underground Storage Tanks: _____ Describe: ____________________________

Other: ____________________________

(03/95)
H. RECLAMATION

SITE CONDITIONS
Erosion: Riils _____ / Gullies _____ / Sheetwash _____
Unstable Rock _____ / Slope instability _____ / Wind erosion _____

MITIGATION STATUS
None _____ / Fencing _____ / Signs _____ / Safety hazards mitigated _____
Other: __

Mitigation condition: Good _____ / Fair _____ / Poor _____
Site ID tags: _____ / Locations: _______________________________________

OPTIONAL: Identify the critical reclamation measures needed:

_____ Cable nets, grates
_____ Permanent seal
_____ Gates
_____ Backfill openings, pit
_____ Recontour
_____ Fences
_____ Warning signs
_____ Plug open drill holes
_____ Other: __

I. SITE SKETCH
Show orientation, approximate scale, access route, adjacent drainages, and locations of features on attached sketch map. Use the feature symbols provided in the map legend on page 6.

J. GLOBAL POSITIONING SYSTEM DATA _HA-326M.cor_

K. PHOTOGRAPHS
Number of photographs taken: _Roll 3 (Neg. 9072), frames 23-26_

L. ACTION
Site requires immediate investigation _____ by: Law Enforcement _____ / BLM _____
HAZMAT _____ / Other __

Reason: ___

__

(03/95)
<table>
<thead>
<tr>
<th>Feature</th>
<th>Length</th>
<th>Width</th>
<th>Height or Depth</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill foundation (Perimeter #1)</td>
<td>~100 feet</td>
<td>60 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore stockpile #1 (mislabeled "waste dump" in GPS files)</td>
<td>15 feet</td>
<td>15 feet</td>
<td>20 feet</td>
<td>none</td>
</tr>
<tr>
<td>Ore stockpile #2</td>
<td>15 feet</td>
<td>15 feet</td>
<td>20 feet</td>
<td>none</td>
</tr>
<tr>
<td>Tailings Pond #1 (Perimeter #2)</td>
<td></td>
<td></td>
<td>120 feet</td>
<td>to 6 feet</td>
</tr>
<tr>
<td>Tailings Pond #2 (Perimeter #3)</td>
<td></td>
<td></td>
<td></td>
<td>none appears to be needed</td>
</tr>
<tr>
<td>Tailings Pond #3 (Perimeter #4)</td>
<td></td>
<td></td>
<td></td>
<td>1-3 feet</td>
</tr>
<tr>
<td>Tailings Pond #4 (Perimeter #5)</td>
<td></td>
<td></td>
<td>~160 feet</td>
<td>1-4 feet</td>
</tr>
<tr>
<td>Tailings Pond #5 (Perimeter #6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Notes:

See next page.
Field Notes:

The footings for the old mill are all that remain of the structure (Figure 9-4). The soil in the area is dark brown-gray, and the country rock is limestone and argillite. There are some ore piles east of the road and above the mill. The creek has breached the tailings dams and flows through the tailings piles (Figure 9-5).

Water sampling sites:

Site A is an area adjacent to the millsite that does not contain any tailings. The pH of the water in this area is 8.6.
Site B is 100 feet upstream from Site A. The pH at this site is 8.5.
Site C is at the bridge across Elk Creek, which is above the tailings area. The pH of the water in this area is 8.5.
Site D is at Tailings Pile #1 (Figure 9-6). The pH at this site is 8.5.
Site E is above Tailings Dam #4. In this area, there is a 2-foot border of grass at the edge of the creek. The pH is 8.6, the conductivity is 200 μs, and the flow is approximately 200 gallons per minute.
Site F is on Elk Creek about 50 feet below the tailings area. The pH of the water in this area is 8.6.

A barbed wire fence crosses the lower tailings impoundment (Tailings Pond #5).

Pond #1 1.3 acres
Pond #2 2.0 acres
Pond #3 0.9 acres
Pond #4 1.9 acres
Pond #5 1.1 acres

Total ~7.2 acres

Table 2. Geochemical analyses of tailings from the Red Elephant millsite.

<table>
<thead>
<tr>
<th>Site#</th>
<th>Material</th>
<th>Lab#</th>
<th>Metal Concentrations (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>As</td>
<td>Cd</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA-326m</td>
<td>tailings</td>
<td>49,877</td>
<td>828</td>
</tr>
</tbody>
</table>

Toxicity Characteristic Leaching Procedure (TCLP) (mg/L)

<table>
<thead>
<tr>
<th>Site#</th>
<th>Material</th>
<th>Lab#</th>
<th>Metal Concentrations (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As</td>
</tr>
<tr>
<td>HA-326m</td>
<td>tailings</td>
<td>51,402</td>
<td>0.015</td>
</tr>
</tbody>
</table>

NOTES: *italics* = indicate that analysis is less than (<) value shown.
bold = bold indicates highest concentration sample for that metal in samples analyzed.
-Units: mg/kg = mg/L = ppm.
-Samples analyzed by Alchem Laboratories, Boise, Idaho
-TCLP analyses done using method 1311
Figure 9-1. Topographic map of the Red Elephant millsite, Blaine County, Idaho (U.S. Geological Survey Richardson Summit 7.5-minute topographic map).
Figure 9-2. Map of the Red Elephant millsite, showing features logged during the site inspection. The numbering system for the tailings piles used in this figure corresponds to data collected using the GPS system; Figure 9-3 shows the numbering system used in the text.
Figure 9-3. Sketch map of the Red Elephant millsite, showing the relationship of the impoundments to the course of Elk Creek. The numbers shown for the tailings piles in this sketch are the ones used in the text of this report.
<table>
<thead>
<tr>
<th>Roll Number</th>
<th>Frame Number</th>
<th>Direction</th>
<th>Location/Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (Neg. 9072)</td>
<td>23</td>
<td>looking south</td>
<td>Concrete mill foundations</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>24</td>
<td>looking NW</td>
<td>Middle tailings impoundment with Elk Creek flowing through the middle</td>
</tr>
<tr>
<td>3 (Neg. 9072)</td>
<td>25</td>
<td>looking north</td>
<td>Tailings pile #1 with the stream cutting through the tailings. Note the revegetation on the banks (Site D).</td>
</tr>
</tbody>
</table>

(03/95)
A. SITE IDENTIFICATION
Other BLM ID Number: ________________________________
Locatable _____ / Leasable _____ / Salable _____
Operator (last known): ________________________________
Commodities: Primary _____ / Secondary ___________________
Other Agency ID Number: __ Agency: _______________________

B. LOCATION DATA
Site is in _____ or within a mile _____ of:
ACEC _____ / WSA _____ / Wilderness Area _____ / Riparian Area _____
Nominated for Designation to National Wild & Scenic River System _____

C. ACCESS
Distance in Miles to Closest Public:
Road ________ Dwelling ________ School ________
Potable Water ________ Water Source ________ Trail ________
Campground/Picnic Area ________ Other Public Use ________

D. SITE DESCRIPTION
Nearest named drainage: ___ Distance: ___

G. POTENTIAL HAZARDOUS MATERIALS
Site is under regulatory action _____
CERCLIS Number ___ OR
Federal Docket Number

H. RECLAMATION: Closure Information
Clearances: Threatened & Endangered Species __________________________
Cultural Resources __________________________
Historic __________________________
Other __________________________
Date reclamation completed: __________________________
Type of closure: __________________________ Cost: __________________________
Comments: __________________________

Monitoring frequency: _________ Dates of monitoring visits: __________________________

(Note: The letters for the items above correspond to those on pp. 1 - 3 of this Checklist)
INTERVIEWS

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(03/95)
Figure 9-4. Foundation for the Red Elephant mill. The view is to the south (Roll Hailey 3 (9072), frame #23; photograph by Virginia S. Gillerman; September 12, 1997).

Figure 9-5. Middle tailings impoundment at the Red Elephant mill site, with Elk Creek flowing through the middle of the tailings pile. The view is to the northwest (Roll Hailey 3 (9072), frame #24; photograph by Virginia S. Gillerman; September 12, 1997).
Figure 9-6. Tailings pile at Site D at the Red Elephant millsite. The view is to the north (Roll Hailey 3 (9072), frame #25; photograph by Virginia S. Gillerman; September 12, 1997).
APPENDIX A:

GPS FILES FOR MINES IN RED ELEPHANT GULCH
<table>
<thead>
<tr>
<th>Site ID Number</th>
<th>Rover File Name</th>
<th>File Name for Corrected Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-0054-00007</td>
<td>HA326</td>
<td>HA326a.cor</td>
</tr>
<tr>
<td>ID-0054-00008</td>
<td>HA326L</td>
<td>HA326l.cor</td>
</tr>
<tr>
<td>ID-0054-00009</td>
<td>HA326M</td>
<td>HA326m.cor</td>
</tr>
</tbody>
</table>